• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada da função

Derivada da função

Mensagempor Moura » Seg Jan 03, 2011 15:55

Calcule f ' (1) sabendo-se que f(x) = \frac{lnx^2}{e^{2x}}

Resp: \frac{d}{dx} = \frac{2}{xe^{2x}}-\frac{4ln(x)}{e^{2x}}

Resp: f ' (1) = 2e^{-2}
Editado pela última vez por Moura em Seg Jan 03, 2011 18:25, em um total de 1 vez.
P = NP
Moura
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Dez 13, 2010 11:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Derivada da função

Mensagempor MarceloFantini » Seg Jan 03, 2011 17:13

A função é f(x) = \frac{\ln x^2}{(e^2) x} ou f(x) = \frac{\ln x^2}{e^{2x}}?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Derivada da função

Mensagempor Moura » Seg Jan 03, 2011 18:26

Função corrigida.
P = NP
Moura
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Dez 13, 2010 11:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Derivada da função

Mensagempor MarceloFantini » Seg Jan 03, 2011 18:36

\frac{df}{dx} = \frac{e^{2x} . \frac{d \ln(x^2))}{x} - \ln x^2 . \frac{d e^{2x}}{x}}{(e^{2x})^2} = \frac{e^{2x} . (\frac{1}{x^2} . 2x) - \ln x^2 2e^{2x}}{e^{4x}} = \frac{\frac{2e^{2x}}{x} - 2e^{2x} \ln x^2}{e^4}

f'(1) = \frac{2e^2}{e^4} = \frac{2}{e^2}
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Derivada da função

Mensagempor Moura » Seg Jan 03, 2011 23:22

Obrigado pela ajuda. :y:
P = NP
Moura
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Dez 13, 2010 11:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Derivada da função

Mensagempor MarceloFantini » Seg Jan 03, 2011 23:25

Sem problemas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.