• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função W de Lambert

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Função W de Lambert

Mensagempor victoreis1 » Sex Dez 24, 2010 21:28

há uns meses descobri essa função que nos permite resolver inúmeras equações que involvem exponenciais..

mas há uns dias venho me debruçando pra resolver esse problema algebricamente: (proposto por mim mesmo)

3^{x} = x^{2} + 3 (x real)

Consigo resolver qualquer equação do tipo:

a^{x} = b*x^{n} com a, b, n > 0 e a diferente de 1 (todos reais)

É possível resolver a primeira equação dispondo da função W de lambert e de logaritmos, além de quaisquer artifícios?

Coloquei essa equação no WolframAlpha, ele não resolve algebricamente, simplesmente acha a solução pelo gráfico dos dois membros da equação..
victoreis1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qua Out 20, 2010 14:49
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função W de Lambert

Mensagempor Guill » Sáb Ago 27, 2011 13:27

{3}^{x}=x^2+3

{3}^{x}-3=x^2


Fatorando:

3.({3}^{x-1}-1)=x^2


Sabe-se que 3 elevado a qualquer número é um ímpar. Se antecessor é, portanto, um par:

3.(2n)=x^2

x^2=6n



Sendo assim, x pertence aos reais tal que x seja um número multiplicado por 6.

x=\sqrt[]{6n}
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função W de Lambert

Mensagempor MarceloFantini » Sáb Ago 27, 2011 13:52

Acredito que isto não será verdade sempre, pois tome x=0, teremos 3^{-1} -1 = \frac{-2}{3}, que não é múltiplo de dois. Divisibilidade só faz sentido no conjunto dos inteiros.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Desafios Difíceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.