• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Intgerais

Intgerais

Mensagempor Manoella » Qui Dez 16, 2010 09:44

Olá! Preciso que alguém mim explica sobre essas integrais ai;

a)F\frac{1}{{(3x-5)}^{8}}dx


b)\int_{1}^{-1}\frac{{x}^{2}}{\sqrt[]{{x}^{3}+9}}dx
Manoella
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qui Dez 16, 2010 09:30
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Intgerais

Mensagempor Moura » Qui Dez 16, 2010 10:54

u=3x-5 => du/dx=3 => dx=du/3

\int_{}^{}\frac{1}{(3x-5)^8}dx

\int_{}^{}\frac{1}{u^8}dx=\int_{}^{}{u}^{-8}dx=\int_{}^{}{u}^{-8}\frac{du}{3}=

\frac{1}{3}\int_{}^{}{u}^{-8}du= \frac{1}{3}\frac{{u}^{-7}}{7}= \frac{{u}^{-7}}{21}= \frac{(3x-5)^{-7}}{21}=

\frac{-1}{21(3x-5)^{7}} :y:

--------------------------------------------------------------------------------

u=x^3+9 => du/dx=3x^2 => dx=du/3x^2

\int_{1}^{-1}\frac{x^2}{\sqrt[]{x^3+9}}dx = \int_{1}^{-1}\frac{x^2}{(x^3+9)^\frac{1}{2}}dx = \int_{1}^{-1}\frac{x^2}{u^\frac{1}{2}}dx =

\int_{1}^{-1}x^2u^\frac{-1}{2}dx = \int_{1}^{-1}x^2u^\frac{-1}{2}\frac{du}{3x^2} = \frac{1}{3}\int_{1}^{-1}u^\frac{-1}{2}du =

\frac{1}{3}\frac{u^\frac{1}{2}}{\frac{1}{2}}]_{1}^{-1} = \frac{2}{3}u^\frac{1}{2}]_{1}^{-1} = \frac{2(x^3+9)^\frac{1}{2}}{3}]_{1}^{-1} =

\frac{2((-1)^3+9)^\frac{1}{2}}{3}-(\frac{2((1)^3+9)^\frac{^1}{2}}{3}) = \frac{4*\sqrt[]{2}}{3}-\frac{2*\sqrt[]{10}}{3} :y:
P = NP
Moura
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Dez 13, 2010 11:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}