• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Intgerais

Intgerais

Mensagempor Manoella » Qui Dez 16, 2010 09:44

Olá! Preciso que alguém mim explica sobre essas integrais ai;

a)F\frac{1}{{(3x-5)}^{8}}dx


b)\int_{1}^{-1}\frac{{x}^{2}}{\sqrt[]{{x}^{3}+9}}dx
Manoella
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qui Dez 16, 2010 09:30
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Intgerais

Mensagempor Moura » Qui Dez 16, 2010 10:54

u=3x-5 => du/dx=3 => dx=du/3

\int_{}^{}\frac{1}{(3x-5)^8}dx

\int_{}^{}\frac{1}{u^8}dx=\int_{}^{}{u}^{-8}dx=\int_{}^{}{u}^{-8}\frac{du}{3}=

\frac{1}{3}\int_{}^{}{u}^{-8}du= \frac{1}{3}\frac{{u}^{-7}}{7}= \frac{{u}^{-7}}{21}= \frac{(3x-5)^{-7}}{21}=

\frac{-1}{21(3x-5)^{7}} :y:

--------------------------------------------------------------------------------

u=x^3+9 => du/dx=3x^2 => dx=du/3x^2

\int_{1}^{-1}\frac{x^2}{\sqrt[]{x^3+9}}dx = \int_{1}^{-1}\frac{x^2}{(x^3+9)^\frac{1}{2}}dx = \int_{1}^{-1}\frac{x^2}{u^\frac{1}{2}}dx =

\int_{1}^{-1}x^2u^\frac{-1}{2}dx = \int_{1}^{-1}x^2u^\frac{-1}{2}\frac{du}{3x^2} = \frac{1}{3}\int_{1}^{-1}u^\frac{-1}{2}du =

\frac{1}{3}\frac{u^\frac{1}{2}}{\frac{1}{2}}]_{1}^{-1} = \frac{2}{3}u^\frac{1}{2}]_{1}^{-1} = \frac{2(x^3+9)^\frac{1}{2}}{3}]_{1}^{-1} =

\frac{2((-1)^3+9)^\frac{1}{2}}{3}-(\frac{2((1)^3+9)^\frac{^1}{2}}{3}) = \frac{4*\sqrt[]{2}}{3}-\frac{2*\sqrt[]{10}}{3} :y:
P = NP
Moura
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Dez 13, 2010 11:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)