por PedroSantos » Ter Dez 07, 2010 22:59
Após alguma pesquisa encontrei uma forma de demonstrar algumas razões métricas de um triangulo retangulo.Nomeadamente:
-Cateto ao quadrado é igual ao produto da sua projecção sobre a hiputenusa pelo compromento da hipotenusa.

-O comprimento da altura relativa à hipotenusa ao quadrado é igual ao produto das projecções dos catetos sobre a hipotenusa.

O método que encontrei, recorre à adição e ao produto escalar de vectores. Tomemos a seguinte figura:

- triangulo1.png (3.01 KiB) Exibido 1706 vezes
Cada um dos vertices do triangulo têm uma identificação identica ao lado oposto e o pé da altura relativa à hipotenusa será denotado por H.
A primeira relação afirma que

Então:


( a projecção da hipotenusa sobre um eixo ortognal é o cateto-base)

(decomposição de CA nos seus elementos)

(os vectores HA e CB são prependiculares, o produto escalar é 0)

O vector CA corresponde ao cateto b, o CH corresponde à projecção de b sobre a hipotenusa e CB é o comprimento da hipotenusa.
Basta proceder de forma semelhante para a outra relação métrica.
Podem confirmar se o meu raciocino está correcto. Existem outras formas de demostrar estas relações métricas?
Fonte:
http://gilles.costantini.pagesperso-orange.fr/Lycee_fichiers/DevoirsP_fichiers/DM15.pdf
-
PedroSantos
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Dez 01, 2010 16:38
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: ensino secundário
- Andamento: cursando
por VtinxD » Dom Dez 12, 2010 22:23
A forma que conheço para demonstra-las é através de semelhança entre os triângulos retângulos que aparecem na sua figura.
-
VtinxD
- Usuário Parceiro

-
- Mensagens: 64
- Registrado em: Dom Ago 15, 2010 18:29
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Bacharelado em Matematica
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Relaçoes metricas
por DanielRJ » Dom Dez 18, 2011 13:22
- 1 Respostas
- 1701 Exibições
- Última mensagem por DanielRJ

Dom Dez 18, 2011 15:33
Geometria Plana
-
- Relações Métricas
por janderson77 » Seg Dez 02, 2013 12:28
- 0 Respostas
- 899 Exibições
- Última mensagem por janderson77

Seg Dez 02, 2013 12:28
Geometria Plana
-
- relaçoes metricas nos triangulos
por stanley tiago » Sáb Fev 12, 2011 19:34
- 4 Respostas
- 2711 Exibições
- Última mensagem por stanley tiago

Dom Fev 13, 2011 18:04
Geometria Plana
-
- relaçoes metricas na circuferencia
por stanley tiago » Seg Abr 11, 2011 18:37
- 2 Respostas
- 1917 Exibições
- Última mensagem por stanley tiago

Ter Abr 12, 2011 10:06
Geometria Analítica
-
- Circunferencia e relações metricas
por alfabeta » Qua Fev 29, 2012 00:09
- 0 Respostas
- 1646 Exibições
- Última mensagem por alfabeta

Qua Fev 29, 2012 00:09
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.