• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demonstração Relações Métricas

Demonstração Relações Métricas

Mensagempor PedroSantos » Ter Dez 07, 2010 22:59

Após alguma pesquisa encontrei uma forma de demonstrar algumas razões métricas de um triangulo retangulo.Nomeadamente:

-Cateto ao quadrado é igual ao produto da sua projecção sobre a hiputenusa pelo compromento da hipotenusa.
{b}^{2}=a.n

-O comprimento da altura relativa à hipotenusa ao quadrado é igual ao produto das projecções dos catetos sobre a hipotenusa.
{h}^{2}=m.n

O método que encontrei, recorre à adição e ao produto escalar de vectores. Tomemos a seguinte figura:

triangulo1.png
triangulo1.png (3.01 KiB) Exibido 1706 vezes


Cada um dos vertices do triangulo têm uma identificação identica ao lado oposto e o pé da altura relativa à hipotenusa será denotado por H.

A primeira relação afirma que

{CA}^{2}=CB.CH

Então:

{CA}^{2}=CA.CA

{CA}^{2}=CA.CB ( a projecção da hipotenusa sobre um eixo ortognal é o cateto-base)

{CA}^{2}=(CH+HA).CB (decomposição de CA nos seus elementos)

{CA}^{2}=CH.CB+HA.CB(os vectores HA e CB são prependiculares, o produto escalar é 0)

{CA}^{2}=CH.CB

O vector CA corresponde ao cateto b, o CH corresponde à projecção de b sobre a hipotenusa e CB é o comprimento da hipotenusa.
Basta proceder de forma semelhante para a outra relação métrica.

Podem confirmar se o meu raciocino está correcto. Existem outras formas de demostrar estas relações métricas?

Fonte:
http://gilles.costantini.pagesperso-orange.fr/Lycee_fichiers/DevoirsP_fichiers/DM15.pdf
PedroSantos
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Dez 01, 2010 16:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: ensino secundário
Andamento: cursando

Re: Demonstração Relações Métricas

Mensagempor VtinxD » Dom Dez 12, 2010 22:23

A forma que conheço para demonstra-las é através de semelhança entre os triângulos retângulos que aparecem na sua figura.
VtinxD
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Dom Ago 15, 2010 18:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Matematica
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?