• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demonstração Relações Métricas

Demonstração Relações Métricas

Mensagempor PedroSantos » Ter Dez 07, 2010 22:59

Após alguma pesquisa encontrei uma forma de demonstrar algumas razões métricas de um triangulo retangulo.Nomeadamente:

-Cateto ao quadrado é igual ao produto da sua projecção sobre a hiputenusa pelo compromento da hipotenusa.
{b}^{2}=a.n

-O comprimento da altura relativa à hipotenusa ao quadrado é igual ao produto das projecções dos catetos sobre a hipotenusa.
{h}^{2}=m.n

O método que encontrei, recorre à adição e ao produto escalar de vectores. Tomemos a seguinte figura:

triangulo1.png
triangulo1.png (3.01 KiB) Exibido 1707 vezes


Cada um dos vertices do triangulo têm uma identificação identica ao lado oposto e o pé da altura relativa à hipotenusa será denotado por H.

A primeira relação afirma que

{CA}^{2}=CB.CH

Então:

{CA}^{2}=CA.CA

{CA}^{2}=CA.CB ( a projecção da hipotenusa sobre um eixo ortognal é o cateto-base)

{CA}^{2}=(CH+HA).CB (decomposição de CA nos seus elementos)

{CA}^{2}=CH.CB+HA.CB(os vectores HA e CB são prependiculares, o produto escalar é 0)

{CA}^{2}=CH.CB

O vector CA corresponde ao cateto b, o CH corresponde à projecção de b sobre a hipotenusa e CB é o comprimento da hipotenusa.
Basta proceder de forma semelhante para a outra relação métrica.

Podem confirmar se o meu raciocino está correcto. Existem outras formas de demostrar estas relações métricas?

Fonte:
http://gilles.costantini.pagesperso-orange.fr/Lycee_fichiers/DevoirsP_fichiers/DM15.pdf
PedroSantos
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Dez 01, 2010 16:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: ensino secundário
Andamento: cursando

Re: Demonstração Relações Métricas

Mensagempor VtinxD » Dom Dez 12, 2010 22:23

A forma que conheço para demonstra-las é através de semelhança entre os triângulos retângulos que aparecem na sua figura.
VtinxD
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Dom Ago 15, 2010 18:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Matematica
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.