• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(ITA) MATRIZ

(ITA) MATRIZ

Mensagempor natanskt » Sex Nov 26, 2010 15:28

SEJAM X,Y e Z numeros reais com y diferente de zero.considere a matriz inversivel.
A=\begin{bmatrix}
x & 1 & 1 \\
y & 0 & 0 \\
z & -1 & 1
\end{bmatrix}
então:
a-)a soma dos termos da primeira linha de A^-1 é igual a x+1
b-)a soma dos termos da primeira linha de A^-1 é igual a 0
c-)a soma dos termos da primeira linha de A^-1 é igual a 1
d-)a soma dos termos da segunda linha de A^-1 é igual a y
e-)a soma dos termos da terceira linha de A^-1 é igual a 1
______________________________________________________________________________________________________________________
eu fiz assim:
1-)achei o determinante por sarrus(está certo)????????
2-)calculei os cofatores dos elementos e depois fiz a matriz adjunta (eu posso calcular o cofator quando é letras???(x,y,z)
3-)feito o cofator eu dividi a matriz adjunta pelo determinante da matriz A.
ficou assim a inversa:
A^-1=\begin{bmatrix}
0 & -2 & 0 \\
-y & x-z & -y\\
-y & x+z & y
\end{bmatrix}essa matriz dividido por -2y
como que divide? eu não sei!
\frac{-2}{-2y},\frac{-y}{-2y},\frac{x-z}{-2y}
alguem fazer essas divisão pra mim ver como que é?
se eu estiver errado na resolução corrija-me!
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ITA) MATRIZ

Mensagempor natanskt » Seg Nov 29, 2010 07:12

ajuda aew pessoal
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ITA) MATRIZ

Mensagempor natanskt » Sex Dez 03, 2010 13:33

quem sabe me ajuda aeew
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ITA) MATRIZ

Mensagempor nietzsche » Qua Jan 12, 2011 17:52

Da pra vc achar a inversa fazendo o seguinte (esse método está no livro do Elon Lages Lima, Álgebra linear, IMPA):

Dada a matriz A, vc escreve a matriz identidade ao lado:

x 1 1 | 1 0 0
y 0 0 | 0 1 0
z -1 1 | 0 0 1


Realiza operações básicas (de matriz) de tal forma que vc obtenha a matriz identidade do lado esquerdo:
1 0 0 | * * *
0 1 0 | * * *
0 0 1 | * * *

Do lado direito, no lugar dos *, aparecera a matriz inversa.
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}