• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[racionalização] Acredito ser PA ou PG

[racionalização] Acredito ser PA ou PG

Mensagempor claudia » Seg Ago 18, 2008 17:05

Já tentei achar a razão subtraindo a 2ª da 1ª e dividindo as mesmas para ver se refere-se a uma PA ou PG, mas não consegui encontrar. Será que este é o caminho?
Questão: Determine o valor da Soma S= \frac{1}{1+\sqrt[]{2}}+\frac{1}{\sqrt[]{2}+ \sqrt[]{3}}+ \frac{1}{\sqrt[]{3}+2}...+ \frac{1}{\sqrt[]{99}+ 10}
Obrigada! Claudia.
claudia
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Ago 13, 2008 17:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: pré-vestibular
Andamento: formado

Re: Acredito ser PA ou PG

Mensagempor admin » Seg Ago 18, 2008 17:47

Olá Cláudia, boa tarde!

De fato, em busca do caminho, estas duas tentativas seriam bons testes e você não fez mal em verificar.
Mas, se não encontrou a razão, não se trata de progressão aritmética ou geométrica.

:idea: : tente racionalizar os denominadores de algumas parcelas, reescreva a soma e perceberá uma peculiaridade.

Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: [racionalização] Acredito ser PA ou PG

Mensagempor claudia » Seg Ago 18, 2008 18:18

OK, racionalizando eu vou ficar com \sqrt[]{2}-1 + \sqrt[]{3}-\sqrt[]{2}+ 2 - \sqrt[]{3}.Vou cortar as raizes dos três primeiros termos e fico com: -1 +2...+10 -\sqrt[]{99}. Será que o primeiro 1 deveria ser positivo? Não sei quantos termos terão no meio.
claudia
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Ago 13, 2008 17:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: pré-vestibular
Andamento: formado

Re: [racionalização] Acredito ser PA ou PG

Mensagempor admin » Seg Ago 18, 2008 18:33

Escreva mais termos para você perceber corretamente como será a simplificação das parcelas.
Acredito que 5 ou 6 iniciais e 3 finais ajudarão bastante!

Outra dica: para facilitar a visualização, coloque raiz onde não tem, por exemplo:
1 = \sqrt{1}

2 = \sqrt{4}

\vdots

Assim você terá certeza de quantos são os termos, apesar que esta quantidade não será utilizada.
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: [racionalização] Acredito ser PA ou PG

Mensagempor claudia » Seg Ago 18, 2008 19:36

Entendido.
Obrigada e Boa Noite!
claudia
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Ago 13, 2008 17:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: pré-vestibular
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}