• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(ESPCEX)-DETERMINANTE

(ESPCEX)-DETERMINANTE

Mensagempor natanskt » Seg Nov 22, 2010 15:05

sendo {a.b} \in R a \not  1 e o determinante \begin{bmatrix}
a^2 &-4b & b^2 \\
a & 2 & a \\
b^2 & 0 & a^2
\end{bmatrix}=128a - 128b pode-se dizer que:
a-)a+b=4
b-)a+b=8
c-)a+b=2raiz de 2
d-)a+b=4 raiz de 2
e-) a+b=2



questão dificil
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ESPCEX)-DETERMINANTE

Mensagempor Elcioschin » Seg Nov 22, 2010 22:33

Natansk

Pode ser trabalhoso mas não é difícil. Aplicando Sarrus se chega facilmente a:

2a^4 - 2b^4 + 4ab³ - 4ab³ = 128a - 128b

2*(a^4 - b^4) + 4ab*(a² - b²) = 128*(a - b)

2*(a² + b²)*(a² - b²) + 4ab*(a² - b²) = 128*(a - b)

(a² + b²)*(a + b)*(a - b) + 2ab*(a + b)*(a - b) = 64*(a - b) ----> Dividindo por (a - b):

(a² + b²)*(a + b) + 2ab*(a + b) = 64 ---> Colocando (a + b) em evidência no 1º membro:

(a² + b² + 2ab)*(a + b) = 64

(a + b)²*(a + b) = 64

(a + b)³ = 4³

a + b = 4
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Matrizes e Determinantes

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}