• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Números com 2 algarismos repetidos

Números com 2 algarismos repetidos

Mensagempor gustavowelp » Sex Nov 19, 2010 07:40

Bom dia.

Não entendi como resolver esta questão:

No sistema decimal de numeração, quantos números existem com 4 algarismos, tendo 2 algarismos repetidos?

A resposta é: 4464

Obrigado
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Números com 2 algarismos repetidos

Mensagempor victoreis1 » Sex Nov 19, 2010 12:54

seja N um número de 4 algarismos : abcd.

Calculemos primeiro o número de números com 4 algarismos que NÃO possuem algarismos repetidos:

Deste modo, a pode assumir qualquer valor de 1 até 9 (não pode ser 0, caso contrário, o número terá 3 algarismos)

b pode assumir qualquer valor de 0 até 9, menos o valor de a.

c pode assumir qualquer valor de 0 até 9, menos os valores de a e de b.

d pode assumir qualquer valor de 0 até 9, menos os valores de a, b e c.

Portanto, há 9 possibilidades para a, 9 para b, 8 para c e 7 para d , logo o número de números de 4 algarismos que não possuem dígitos repetidos é 9 . 9 . 8 . 7 = 4536.

Há 9999 - 1000 + 1 = 9000 números de 4 algarismos no total, logo, há 9000 - 4536 = 4464 números de 4 algarismos os quais possuem dígitos repetidos.
victoreis1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qua Out 20, 2010 14:49
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Números com 2 algarismos repetidos

Mensagempor gustavowelp » Sex Nov 19, 2010 13:27

Não entendi o "mais um" na fórmula dos 9000.

Obrigado!!!
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Números com 2 algarismos repetidos

Mensagempor alexandre32100 » Sex Nov 19, 2010 13:32

Existem números positivos e negativos, certo? Então a solução não seria 4464\times2=8928? Afinal você apenas considerou os números positivos, Victor.

Gustavo, realmente não há alguma especificação do tipo no enunciado do problema?
alexandre32100
 

Re: Números com 2 algarismos repetidos

Mensagempor gustavowelp » Sex Nov 19, 2010 13:42

A única informação que tenho sobre o enunciado é a que está descrita.

De qualquer forma, te agradeço muito pela ajuda!!!
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Números com 2 algarismos repetidos

Mensagempor victoreis1 » Sex Nov 19, 2010 14:46

gustavowelp escreveu:Não entendi o "mais um" na fórmula dos 9000.

Obrigado!!!


exemplos:

quantidade de números entre 1 e 5 = 1, 2, 3, 4, 5 = 5 números = (5 - 1) + 1

quantidade de números entre 10 e 13 = 10, 11 ,12 e 13 = 4 números = (13 - 10) + 1

analogamente,

quantidade de números entre 1000 e 9999 = (9999 - 1000) + 1 = 9000

alexandre, creio que o problema se refere aos inteiros positivos..
victoreis1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qua Out 20, 2010 14:49
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?