por Cleyson007 » Sáb Jul 19, 2008 13:21
Olá, bom dia, tudo bem?
Gostaria de saber se a resolução do seguinte determinante (pelo Teorema de Laplace) está correta!!!
Desde já agradeço...
O determinante é o seguinte----> 
Procurei resolver pela coluna que tivesse a maior quantidade de zeros (

,

,

e

)!!!
Joguei na fórmula --->

Resolvendo, encontrei o valor de

para

.
Peguei o valor obtido (

) e multipliquei pelo valor representado em

(

.
Obtendo como resposta

!!!

Está correto
Forte Abraço!!!
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por admin » Sáb Jul 19, 2008 16:40
Olá Cleyson, boa tarde!
Em primeiro lugar, talvez tenha sido algum erro na edição, mas este determinante não é igual a -12.
Até porque parece ser o determinante que você quer calcular.
Cleyson007 escreveu:O determinante é o seguinte---->

Estou considerando que o problema seja o seguinte:

Cleyson007 escreveu:Joguei na fórmula --->

O cofator de

também pode ser chamado de
complemento algébrico do elemento 
, também indicado por

.
Cleyson007 escreveu:Resolvendo, encontrei o valor de

para

.
Cleyson,

é o valor calculado de

e não de

(também acredito ter sido um descuido na edição).
Cleyson007 escreveu:Peguei o valor obtido (

) e multipliquei pelo valor representado em

(

.
Apenas cuidado, não teve interferência na conta mas, também há o fator

implícito no teorema, e dependendo da posição do

pode ser

, pois, escolhendo a coluna 2, pelo teorema de Laplace:
(chamemos a matriz de

)






E, de fato,

, como você já calculou.
Bons estudos!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [P.A.] Está correto?
por Cleyson007 » Dom Mai 25, 2008 19:37
- 1 Respostas
- 3079 Exibições
- Última mensagem por admin

Dom Mai 25, 2008 19:55
Progressões
-
- [Derivada] Esta correto o que eu fiz?
por carvalhothg » Ter Set 13, 2011 13:22
- 2 Respostas
- 1741 Exibições
- Última mensagem por thiago toledo

Ter Set 13, 2011 18:21
Cálculo: Limites, Derivadas e Integrais
-
- Também está correto?
por Cleyson007 » Qui Out 10, 2013 17:27
- 2 Respostas
- 1659 Exibições
- Última mensagem por Cleyson007

Sex Out 11, 2013 15:28
Geometria Analítica
-
- [Probabilidade] Está correto?
por KleinIll » Sex Out 25, 2013 15:45
- 2 Respostas
- 1867 Exibições
- Última mensagem por KleinIll

Sex Nov 29, 2013 00:31
Probabilidade
-
- Será que o meu raciocínio esta correto!?
por Evaldo » Qua Dez 30, 2009 12:12
- 1 Respostas
- 5144 Exibições
- Última mensagem por Neperiano

Sex Set 23, 2011 19:33
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.