• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resultado misterioso de |x|<a alguém saberia me explicar ?

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

Resultado misterioso de |x|<a alguém saberia me explicar ?

Mensagempor minyamasaki » Ter Jun 01, 2010 17:58

Quero colocar a inequação |x|<a da seguinte forma:

(i) Se |x|<a então multiplicando os dois membros da inequação por 1/(a*|x|) temos que (1/a)<(1/|x|) considerando que x seja um numero negativo, pela definição de modulo, temos então que (1/a)<(-1/x).

(ii) Se |x|<a, considerando que x seja um número negativo logo, -x<a multiplicando os dois menbros da inequação por -1 temos que x>-a multiplicando novamente os dois membros por 1/(a*x) temos que (1/a)>(-1/x).

Porque os resultados de (i) e (ii) são diferentes e qual seria a resposta correta ?
minyamasaki
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Jun 01, 2010 17:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: formado

Re: Resultado misterioso de |x|<a alguém saberia me explicar

Mensagempor MarceloFantini » Ter Jun 08, 2010 19:00

Você errou na parte (ii). Na primeira, lembre-se que você multiplicou por \frac{1}{a|x|}. Ou seja, se x é negativo, retirando o módulo teria que multiplicar por \frac{1}{a(-x)}, o que você não fez na segunda parte, e simplesmente assumiu que x era positivo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Resultado misterioso de |x|<a alguém saberia me explicar

Mensagempor jce_335 » Dom Ago 08, 2010 18:04

Você errou em ii) quando multiplicou x > - a por \dfrac{1}{a \cdot x}. Isso não implica em \dfrac{1}{a} > - \dfrac{1}{x}, como você disse. Na verdade aquilo equivale a \dfrac{1}{a} < - \dfrac{1}{x}, pois você mutiplicou a desigualdade por um número negativo: \dfrac{1}{a \cdot x}.

Note que a é positivo, pois você afirmou que |x| < a e o módulo de um número é sempre positivo ou nulo. Por conveniência você afirmou x < 0, logo a expressão \dfrac{1}{a \cdot x} é negativa.
jce_335
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mai 23, 2010 13:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Desafios Difíceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.