• Anúncio Global
    Respostas
    Exibições
    Última mensagem

O pagamento em ouro

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

O pagamento em ouro

Mensagempor stalone » Sex Dez 18, 2009 17:42

Certo homem tinha uma barra de ouro e queria pagar com ela 7 dias de hospedagem em uma pousada
o dono da pousada aceitou que ele pagasse com o ouro mas com uma condição , a que ele deveria pagar a cada dia uma diaria e que ele só poderia cortar o ouro duas vezes apenas.

A questão é : Como o homem deve cortar o ouro pra pagar todas as diárias , uma a cada dia.?
stalone
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Dez 18, 2009 16:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Computação
Andamento: formado

Re: O pagamento em ouro

Mensagempor Molina » Sáb Dez 19, 2009 14:03

Com três cortes até que consegui. Mas com apenas 2 ainda não.

:n:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: O pagamento em ouro

Mensagempor stalone » Dom Dez 20, 2009 14:25

Molina , se tu tiver conseguido com 3 cortes , tu concerteza já está no caminho da solução ,
uma dica pra se resolver é que não será possível cortar de forma que fique 7 partes iguais
para ser possível pagar a cada dia( ou seja 1/7 a cada dia ) mas sim de uma forma que se possa
pagar e receber o troco com as partes que você já pagou anteriormente. :D

Abraço a todos.
stalone
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Dez 18, 2009 16:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Computação
Andamento: formado

Re: O pagamento em ouro

Mensagempor Elcioschin » Seg Dez 21, 2009 18:44

Divida barra em 7 partes iguais

Dê apenas dois cortes, separando em 3 partes: 1/7, 2/7, 4/7

No 1º dia entrega barra de 1/7.
No 2º dia entrega a de 2/7 e recebe de troco a de 1/7.
No 3º dia entrega a de 1/7.
No 4º dia entrega a de 4/7 e recebe de troco a de 1/7 e a de 2/7.
No 5º dia entrega a de 1/7.
No 6º dia entrega a de 2/7 e recebe de troco a de 1/7.
No 7º dia entrega a de 1/7.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Desafios Difíceis

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.