• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Teorema de Bayes

Teorema de Bayes

Mensagempor probestat » Sáb Dez 01, 2012 18:15

Pessoal ainda não consegui entender como fazer isso? Será que alguém pode me ajudar no raciocínio desse exercício?

Sabe-se que de cada 100 maçãs colhidas, 23 chegam danificadas ao mercado atacadista. Certo comerciante pegou uma amostra aleatória de 10 maçãs de um lote que acaba de receber. Qual a probabilidade de:

encontrar 5 maçãs danificadas??

encontrar 3 maçãs danificadas??

não encontrar maçãs danificadas??

que todas estejam danificadas??

Obrigado!!
probestat
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Dez 01, 2012 16:40
Formação Escolar: GRADUAÇÃO
Área/Curso: TI
Andamento: cursando

Re: Teorema de Bayes

Mensagempor probestat » Dom Dez 02, 2012 00:30

Pessoal alguem pode me auxiliar???
probestat
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Dez 01, 2012 16:40
Formação Escolar: GRADUAÇÃO
Área/Curso: TI
Andamento: cursando

Re: Teorema de Bayes

Mensagempor probestat » Dom Dez 02, 2012 16:02

Cheguei nesse numeros. mais não estão batendo...

Essa esta realmente muito complicada


encontrar 5 maçãs danificadas; 24,61%
encontrar 3 maçãs danificadas; 11,72%
não encontrar maçãs danificadas; 0,10%
probestat
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Dez 01, 2012 16:40
Formação Escolar: GRADUAÇÃO
Área/Curso: TI
Andamento: cursando

Re: Teorema de Bayes

Mensagempor Fabio Wanderley » Ter Dez 18, 2012 00:47

Boa noite,

Ainda estou cursando Probabilidade 1. Vou tentar ajudar.

Pela leitura do problema, creio que podemos resolvê-lo usando uma distribuição hipergeométrica. Você estudou variáveis aleatórias?

Fiz essa aqui:
encontrar 5 maçãs danificadas??


Meu resultado foi 0,0384

Condiz com o seu gabarito?

Aguardo sua resposta.
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D