• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema

Problema

Mensagempor Liliana » Dom Out 06, 2013 19:10

[Problema de determinação e resolução de equações]


A fórmula C=5/9 (F-32) permite converter graus Fahrenheit em graus Celsius

a) Determine em graus Celsius: 32º F e -4ºF.
b)Resolva a equação dada em ordem a F.
c) Determine em graus Fahrenheit 100º C e 30º C.
Liliana
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Out 06, 2013 18:53
Formação Escolar: SUPLETIVO
Área/Curso: Métodos Quantitativos
Andamento: cursando

Re: Problema

Mensagempor Pessoa Estranha » Dom Out 06, 2013 22:41

Olá....

Seja C = \frac{5(F-32)}{9} a fórmula de conversão de Celsius para Fahrenheit.

O primeiro item pede para fazermos duas transformações, ou seja, pede para exibir o valor da temperatura, que está em Fahrenheit, em Celsius. Daí, basta substituirmos na fórmula dada. Observe que trata-se de uma relação tal que substituindo F por valores, obteremos o resultado em Celsius, ou seja, obteremos C. É isto o que queremos. Então:

32°F \rightarrow C = \frac{5(32-32)}{9}=0;

-4°F \rightarrow C = \frac{5(-4-32)}{9}=\frac{5(-36)}{9}=\frac{5(-1)(4)(9)}{9}=-20;

Bem, o segundo item não ficou muito claro o que está sendo pedido, mas acho que devemos reescrever a equação dada de tal forma que F seja escrita em função de C, ou seja, ao invés de escrever C em função de F, como inicialmente, escreveremos F em função de C. Assim:

C = \frac{5(F-32)}{9} \rightarrow

9.C = 5.F - 160 \rightarrow

9.C + 160 = 5.F \rightarrow

F = \frac{9.C + 160}{5}

Logo, o que parece que o exercício está pedindo é: F = \frac{9.C + 160}{5}.

Agora, vejamos o último item. Observe que este pede para fazermos a transformação de uma temperatura em Celsius para Fahrenheit. Assim, note que basta aplicarmos a equação encontrada no item anterior. Daí:

F = \frac{9.100+160}{5} = \frac{10(90+16)}{5} = 2.106 = 212;

F = \frac{9.30+160}{5} = \frac{10(27+16)}{5} = 2.43 = 86;

Espero ter ajudado.... :y:
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Problema

Mensagempor Liliana » Sex Out 18, 2013 22:04

Muito obrigada pela sua ajuda. :y:
Liliana
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Out 06, 2013 18:53
Formação Escolar: SUPLETIVO
Área/Curso: Métodos Quantitativos
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}