• Anúncio Global
    Respostas
    Exibições
    Última mensagem

simplificação de operações

simplificação de operações

Mensagempor ezidia51 » Ter Mar 13, 2018 12:51

Fiz estes exercicios mas não sei se estão corretos.
\sqrt[3]{2,5}.\sqrt[3]{400}=\sqrt[3]{2,5.400}=\sqrt[3]{1000}=\sqrt[3]{2^3.5^3}=2.5=10 =a-3.b3.c-5

LaTeX: \frac{a^2 b^7 c^{-2}}{a^5 b^{-4} c^{-7}}a2b7c−2a5b−4c−7= a^-3.b^5.c^-5

LaTeX: \sqrt{25\%} + 3\%=0,25+0,03=0,5+0,03=0,53 ou 53%


LaTeX: (50\%)^2=(0,5)^2=0,25 = 25
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 81
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: simplificação de operações

Mensagempor Gebe » Ter Mar 13, 2018 16:09

Os codigos latex nao estao aparecendo pra mim, mas se eu entendi os exercicios feitos são:
1) \sqrt[3]{2,5}.\sqrt[3]{400}=\sqrt[3]{2,5.400}=\sqrt[3]{1000}=\sqrt[3]{2^3.5^3}=2.5=10

2) \frac{a^2 b^7 c^{-2}}{a^5 b^{-4} c^{-7}}=a^{-3}.b^5.c^{-5}

3) \sqrt{25\%} + 3\%=\sqrt{0,25}+0,03=0,5+0,03=0,53 ou 53\%

4) (50\%)^2=(0,5)^2=0,25 = 25\%

Se for isso realmente, todos com exceção do 2 estão certos.
No exercicio 2 fica assim:
\frac{a^2 b^7 c^{-2}}{a^5 b^{-4} c^{-7}}=a^2a^{-5} b^7b^4 c^{-2}c^{+7}=a^{2-5} b^{7+4} c^{-2+7}=a^{-3} b^{11} c^{5}

Perceba que os expoentes quando passar ao numerador (ou denominador) trocam seu sinal.
Uma rapida explicação disso é que o que estamos fazendo realmente é multiplicar a expressão por \frac{a^{-5}b^{4}c^{7}}{a^{-5}b^{4}c^{7}} e com isso podemos "cortar" o denominador da expressão.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 153
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: simplificação de operações

Mensagempor ezidia51 » Ter Mar 13, 2018 22:29

Um super muito obrigado!!!Essas explicações me ajudaram muito!!! :y: :y: :y: :y: :y: :y: :y: :y: :y: :) :) :) :) :) :)
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 81
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.