por ezidia51 » Ter Mar 13, 2018 12:51
Fiz estes exercicios mas não sei se estão corretos.
![\sqrt[3]{2,5}.\sqrt[3]{400}=\sqrt[3]{2,5.400}=\sqrt[3]{1000}=\sqrt[3]{2^3.5^3}=2.5=10 \sqrt[3]{2,5}.\sqrt[3]{400}=\sqrt[3]{2,5.400}=\sqrt[3]{1000}=\sqrt[3]{2^3.5^3}=2.5=10](/latexrender/pictures/9197b35c6be452b03c6f8466a09da16b.png)
=a-3.b3.c-5
LaTeX: \frac{a^2 b^7 c^{-2}}{a^5 b^{-4} c^{-7}}a2b7c?2a5b?4c?7= a^-3.b^5.c^-5
LaTeX: \sqrt{25\%} + 3\%=0,25+0,03=0,5+0,03=0,53 ou 53%
LaTeX: (50\%)^2=(0,5)^2=0,25 = 25
-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por Gebe » Ter Mar 13, 2018 16:09
Os codigos latex nao estao aparecendo pra mim, mas se eu entendi os exercicios feitos são:
1)
![\sqrt[3]{2,5}.\sqrt[3]{400}=\sqrt[3]{2,5.400}=\sqrt[3]{1000}=\sqrt[3]{2^3.5^3}=2.5=10 \sqrt[3]{2,5}.\sqrt[3]{400}=\sqrt[3]{2,5.400}=\sqrt[3]{1000}=\sqrt[3]{2^3.5^3}=2.5=10](/latexrender/pictures/9197b35c6be452b03c6f8466a09da16b.png)
2)

3)

4)

Se for isso realmente, todos com exceção do 2 estão certos.
No exercicio 2 fica assim:

Perceba que os expoentes quando passar ao numerador (ou denominador) trocam seu sinal.
Uma rapida explicação disso é que o que estamos fazendo realmente é multiplicar a expressão por
e com isso podemos "cortar" o denominador da expressão.
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por ezidia51 » Ter Mar 13, 2018 22:29
-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Simplificação - Ajuda Dúvidas em relação a simplificação
por wgf » Qui Mai 16, 2013 12:56
- 1 Respostas
- 2248 Exibições
- Última mensagem por DanielFerreira

Dom Mai 19, 2013 18:03
Equações
-
- [Simplificação]Fazer a simplificação da resposta
por neoreload » Qua Fev 04, 2015 05:50
- 3 Respostas
- 2709 Exibições
- Última mensagem por neoreload

Sáb Fev 07, 2015 22:10
Equações
-
- [SIMPLIFICAÇÃO] Simplificação expoentes
por brunnkpol » Ter Mai 07, 2013 17:00
- 1 Respostas
- 1730 Exibições
- Última mensagem por DanielFerreira

Sex Mai 10, 2013 00:40
Aritmética
-
- operações de conjuntos
por Sergio Ribeiro Alves » Qui Fev 14, 2008 10:40
- 1 Respostas
- 4038 Exibições
- Última mensagem por admin

Qui Fev 14, 2008 16:21
Álgebra Elementar
-
- Matriz operações
por DanielRJ » Qui Set 09, 2010 18:06
- 5 Respostas
- 3653 Exibições
- Última mensagem por DanielRJ

Sex Set 10, 2010 17:15
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.