por Amandatkm » Ter Abr 30, 2013 11:26
Um colégio promoveu um torneio esportivo, do qual participaram
várias equipes. A tabela mostra apenas o número de vitórias, empates
e derrotas das equipes A, B e C. Cada vitória vale 2 pontos,
cada empate vale 1 ponto e cada derrota vale zero pontos.
EQUIPES NÚMERO DE
VITÓRIAS
NÚMERO DE
EMPATES
NÚMERO DE
DERROTAS
A 2 x 2
B 5 2 1
C y 0 2
Sabendo que o número total de pontos da equipe A foi a
metade do total de pontos da equipe C e que as três equipes
juntas somaram um total de 27 pontos, então o número de
vitórias da equipe C foi
(A) 1.
(B) 2.
(C) 3.
(D) 4.
(E) 5.
-
Amandatkm
- Usuário Parceiro

-
- Mensagens: 67
- Registrado em: Ter Mar 12, 2013 12:51
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: curso técnico em admiistração
- Andamento: cursando
por Amandatkm » Ter Abr 30, 2013 14:13
Eu não entendi a parte sobre os pontos de B,veja só:
5*2+2=27-3p/2
não entendi esse 3 ai, no caso os pontos de B é igual a 27 menos os pontos de a e menos os pontos de C,mas pq a origem desse 3??
Seria pq : P+P/2+p=3p/2?
mas se for isso pq depois ele foi substituido por 3y?so isso que eu estou com dificuldades,pode me ajudar?obrigada
-
Amandatkm
- Usuário Parceiro

-
- Mensagens: 67
- Registrado em: Ter Mar 12, 2013 12:51
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: curso técnico em admiistração
- Andamento: cursando
por Cleyson007 » Ter Abr 30, 2013 15:43
Amanda, a explicação de baixo está muito melhor de entender. Veja:
Pontos de A: 2(2) + 1(x) + 0(2) = 4 + x + 0 = 4 + x
Pontos de B: 5(2) + 2(1) + 0(1) = 10 + 2 + 0 = 12
Pontos de C: y(2) + 1(0) + 0(2) = 2y + 0 + 0 = 2y
O enunciado diz que: 4 + x = 2y/2 --> 4 + x = y (I)
O enunciado diz também que: 4 + x + 12 + 2y = 27 (II)
Resolvendo o sistema com as equações (I) e (II), encontramos: y = 5.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por Amandatkm » Ter Abr 30, 2013 16:16
o meu ficou assim
4x-y=0
4x+2y=27
multiplicando a primeira por (-1)
3y=27
y=9 ta errado então neh?
o que eu fiz errado?
-
Amandatkm
- Usuário Parceiro

-
- Mensagens: 67
- Registrado em: Ter Mar 12, 2013 12:51
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: curso técnico em admiistração
- Andamento: cursando
por Cleyson007 » Ter Abr 30, 2013 16:25
4 + x = y (I)
4 + x + 12 + 2y = 27 (II)
Trabalhando com a equação (I): 4 + x = y ---->
x = y - 4Agora, vou pegar esse valor de x (que é y - 4) e substituí-lo na equação (II). Veja:
4 +
y - 4 +12 + 2y = 27
Podemos eleminar o 4 - 4 (pois resulta em 0). Logo, y + 12 + 2y = 27
y + 2y = 27 - 12 --> 3y = 15
y = 15/3 -----> y = 5
Comente qualquer dúvida

-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- ajuda
por Daiane kelly » Seg Mar 24, 2008 22:38
- 4 Respostas
- 6390 Exibições
- Última mensagem por Cleyson007

Ter Mai 12, 2009 17:43
Matrizes e Determinantes
-
- Ajuda
por Umbus » Sáb Out 18, 2008 14:12
- 2 Respostas
- 3672 Exibições
- Última mensagem por lopes

Sáb Jun 20, 2009 15:51
Álgebra Linear
-
- Ajuda.
por VanessaFontela » Qui Dez 04, 2008 10:32
- 0 Respostas
- 2894 Exibições
- Última mensagem por VanessaFontela

Qui Dez 04, 2008 10:32
Matemática Financeira
-
- Ajuda!!!
por GABRIELA » Seg Set 21, 2009 17:28
- 1 Respostas
- 2286 Exibições
- Última mensagem por Molina

Seg Set 21, 2009 19:56
Sistemas de Equações
-
- Ajuda!!!!!!
por GABRIELA » Ter Set 22, 2009 16:35
- 6 Respostas
- 4417 Exibições
- Última mensagem por GABRIELA

Qui Set 24, 2009 16:29
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.