• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[DÚVIDA] Potências de expoentes racionais e raízes.

[DÚVIDA] Potências de expoentes racionais e raízes.

Mensagempor invader_zim » Ter Fev 12, 2013 11:31

Por que as raízes são equivalentes a potências de expoentes racionais?
Preciso de uma demonstração. Não basta dizer que é. Não consigo encontrar um livro que explique isso.
invader_zim
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Fev 11, 2013 14:41
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [DÚVIDA] Potências de expoentes racionais e raízes.

Mensagempor DanielFerreira » Ter Fev 12, 2013 12:10

\\ \sqrt[a]{b} = x \\\\ \left( \sqrt[a]{b} \right)^a = x^a \\\\ \left( \sqrt[\cancel{a}]{b} \right)^{\cancel{a}} = x^a \\\\ b = x^a

Eliminamos o expoente de x multiplicando-o por \frac{1}{a}, de acordo com a propriedade de potência.

\\ (b)^{\frac{1}{a}} = (x^a)^{\frac{1}{a}} \\\\\\ b^{\frac{1}{a}} = x^{a \cdot \frac{1}{a}} \\\\\\ \boxed{b^{\frac{1}{a}} = x}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [DÚVIDA] Potências de expoentes racionais e raízes.

Mensagempor invader_zim » Ter Fev 12, 2013 12:15

Ótima demonstração, danjr5. Obrigado!

Saberia me dizer onde posso encontrar livros com demonstrações desse tipo?
invader_zim
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Fev 11, 2013 14:41
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [DÚVIDA] Potências de expoentes racionais e raízes.

Mensagempor DanielFerreira » Ter Fev 12, 2013 12:24

Invander_zim,
infelizmente não sei. Mas, vale ressaltar que usei as propriedades de potência; você já domina esse assunto?

Até a próxima!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.