• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolvido

exercicio resolvido

Mensagempor adauto martins » Sex Abr 23, 2021 15:35

(ITA-1959)mostrar se é verdadeiro

{(1+x)}^{n}\geq 1+nx

onde n é um inteiro positivo e x é qualquer numero maior ou igual a 1.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Sex Abr 23, 2021 15:55

soluçao

essa desiqualdade é conhecida como "desiqualdade de bernoulli".usa-se em maior parte a induçao finita para demonstra-la,mas aqui usarei uma simples algebra para se ter o resultado.
p/-1\prec x\preceq 0\Rightarrow 1+x\succ 0
de fato
-1\prec x \preceq 1\Rightarrow 0\prec x+1 \preceq 1

\Rightarrow x+1\succ 0

p/x\succeq 0\Rightarrow x+1\succ0

logo

{(1+x)}^{n}=(1+x).(1+x)....(1+x)\geq (1+x)+(1+x)+...+(1+x)

\succeq 1+x+x+...+x=1+nx...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Dom Abr 25, 2021 12:50

correçao

a demonstraçao acima vale para
x\succeq0
no intervalo
-1\prec x\leq 0
teriamos
{(x+1)}^{n}=(x+1).(x+1)....(x+1)\preceq (x+1)+(x+1)+...+(x+1)
o qual invalidaria a forma da demonstraçao...
quando eu tiver uma forma demonstravel dessa desiqualdade(que esta correta,e demonstravel via induçao finita)
eu a postarei...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: