• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Aritmética] Polinômios

[Aritmética] Polinômios

Mensagempor Pessoa Estranha » Dom Out 20, 2013 21:03

Olá.... Gostaria de discutir uma questão de uma lista de exercícios de Aritmética. Consegui resolver, contudo estou com algumas dúvidas com relação à resposta.
É o seguinte: "Determine os polinômios f(x) do terceiro grau tais que f(x)-f(x-1)={x}^{2}."

Minha resolução:

Seja f(x)=a{x}^{3}+b{x}^{2}+cx+d. Conforme a informação fornecida, temos:
a{x}^{3}+b{x}^{2}+cx+d - (a{(x-1)}^{3}+b{(x-1)}^{2}+c(x-1)+d)={x}^{2}

Então, desenvolvendo tudo, obtemos:
{x}^{3}(a-a) + {x}^{2}(3a-1) + x(-3a+2b)+ a-b+c = 0

Daí, como precisamos encontrar os valores dos coeficientes, a, b, c, d, então basta resolver o sistema, resultando em:
a = \frac{1}{3}

b = \frac{1}{2}

c = \frac{1}{6}

É neste ponto que estou com dúvida. Ocorre que o coeficiente d não apareceu no sistema. É claro que o coeficiente d é uma constante, mas a questão é: como seria a resposta ? Apenas: f(x)=\frac{1}{3}{x}^{3}+\frac{1}{2}{x}^{2}+\frac{1}{6}x+d ?

Achei um tanto estranho e , então, gostaria de uma opinião.
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Aritmética] Polinômios

Mensagempor Russman » Seg Out 21, 2013 05:52

O coeficiente d é livre e é dele a responsabilidade de varrer a infinidade de polinômios de 3° grau que satisfazem a exigência.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Aritmética] Polinômios

Mensagempor Pessoa Estranha » Seg Out 21, 2013 14:05

Esta certo.... É justamente o que eu queria confirmar. Muito Obrigada! :y:
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}