por lucas77 » Qua Jan 09, 2013 20:18
Olá!
A minha dúvida é quanto a esta regra da potenciação. Não sei como resolvê-la e gostaria que vocês pudessem me explicar esta regra por favor.

Por exemplo:

Como resolver isto?
Obrigado!
-
lucas77
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Jan 09, 2013 20:02
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Curso Técnico em Química
- Andamento: cursando
por Russman » Qua Jan 09, 2013 22:05
Em geral, os números decimais podem ser expressos como frações , chamadas de frações geratrizes. É bem verdade que os decimais se devem a uma motivação fracionária. Assim, basta que você escreva o número em forma de fração e aplique a propriedade exponencial para esta. Uma fração elevada a um certo número equivale a você elevar o numerador e o denominador a este numero e , disto, obter o resultado.
Vou fazer um exemplo:

Como eu disse podemos escrever

, de forma que

.
Agora, lembre-se que

,

e que
![a^{\frac{b}{c}} = \sqrt[c]{a^b} a^{\frac{b}{c}} = \sqrt[c]{a^b}](/latexrender/pictures/69f4fedb047bcc9f5e0bdb204df3cc71.png)
.
Assim,
![3^{-\frac{1}{4}} = \frac{1}{3^{\frac{1}{4}}} = \frac{1}{\sqrt[4]{3}} 3^{-\frac{1}{4}} = \frac{1}{3^{\frac{1}{4}}} = \frac{1}{\sqrt[4]{3}}](/latexrender/pictures/f138349facd07151117939ea08904646.png)
e
![10^{-\frac{1}{4}} = \frac{1}{10^{\frac{1}{4}}} = \frac{1}{\sqrt[4]{10}} 10^{-\frac{1}{4}} = \frac{1}{10^{\frac{1}{4}}} = \frac{1}{\sqrt[4]{10}}](/latexrender/pictures/d104650c8d4214575a49c3c82b84e296.png)
. Portanto,

![= \frac{\frac{1}{\sqrt[4]{3}}}{\frac{1}{\sqrt[4]{10}}} = \frac{1}{\sqrt[4]{3}}.\frac{\sqrt[4]{10}}{1} = \frac{\sqrt[4]{10}}{\sqrt[4]{3}} = \frac{\frac{1}{\sqrt[4]{3}}}{\frac{1}{\sqrt[4]{10}}} = \frac{1}{\sqrt[4]{3}}.\frac{\sqrt[4]{10}}{1} = \frac{\sqrt[4]{10}}{\sqrt[4]{3}}](/latexrender/pictures/a809a8f249d8ac132d40cdfb6ceb65d8.png)
Agora basta racionalizar a fração.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [potenciação] raiz cúbica com potenciação
por JKS » Qua Mar 06, 2013 17:41
- 2 Respostas
- 2292 Exibições
- Última mensagem por JKS

Qui Mar 14, 2013 16:43
Álgebra Linear
-
- [potenciação] módulo com potenciação
por JKS » Qua Mar 06, 2013 17:54
- 2 Respostas
- 1737 Exibições
- Última mensagem por JKS

Qui Mar 14, 2013 16:53
Equações
-
- POTENCIAÇÃO
por DANIELA » Sex Set 25, 2009 16:48
- 5 Respostas
- 3744 Exibições
- Última mensagem por DanielFerreira

Seg Set 28, 2009 10:20
Álgebra Elementar
-
- potenciação
por leandrofelip » Ter Fev 23, 2010 00:10
- 1 Respostas
- 2025 Exibições
- Última mensagem por Marcampucio

Ter Fev 23, 2010 12:56
Sistemas de Equações
-
- POTENCIACAO
por CaAtr » Ter Mar 09, 2010 20:23
- 3 Respostas
- 2293 Exibições
- Última mensagem por CaAtr

Ter Mar 09, 2010 22:17
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.