• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potenciação

Potenciação

Mensagempor lucas77 » Qua Jan 09, 2013 20:18

Olá!

A minha dúvida é quanto a esta regra da potenciação. Não sei como resolvê-la e gostaria que vocês pudessem me explicar esta regra por favor.
{(-a,a)}^{-\frac{a}{a}}

Por exemplo:
{(-0,1)}^{-\frac{1}{3}}

Como resolver isto?

Obrigado!
lucas77
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jan 09, 2013 20:02
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em Química
Andamento: cursando

Re: Potenciação

Mensagempor Russman » Qua Jan 09, 2013 22:05

Em geral, os números decimais podem ser expressos como frações , chamadas de frações geratrizes. É bem verdade que os decimais se devem a uma motivação fracionária. Assim, basta que você escreva o número em forma de fração e aplique a propriedade exponencial para esta. Uma fração elevada a um certo número equivale a você elevar o numerador e o denominador a este numero e , disto, obter o resultado.

Vou fazer um exemplo: (-0,3)^{-\frac{1}{4}}

Como eu disse podemos escrever 0,3 = 3 . 0,1 = 3. \frac{1}{10} = \frac{3}{10}, de forma que

0,3^{-\frac{1}{4}} = \left ( \frac{3}{10}  \right )^{-\frac{1}{4}} = \frac{3^{-\frac{1}{4}}}{10^{-\frac{1}{4}}}.

Agora, lembre-se que

a ^{-x} = \frac{1}{a^x} , a \neq 0

e que

a^{\frac{b}{c}} = \sqrt[c]{a^b}.

Assim, 3^{-\frac{1}{4}} = \frac{1}{3^{\frac{1}{4}}} = \frac{1}{\sqrt[4]{3}} e 10^{-\frac{1}{4}} = \frac{1}{10^{\frac{1}{4}}} = \frac{1}{\sqrt[4]{10}}. Portanto,

0,3^{-\frac{1}{4}} = \frac{3^{-\frac{1}{4}}}{10^{-\frac{1}{4}}} =
=  \frac{\frac{1}{\sqrt[4]{3}}}{\frac{1}{\sqrt[4]{10}}} = \frac{1}{\sqrt[4]{3}}.\frac{\sqrt[4]{10}}{1} = \frac{\sqrt[4]{10}}{\sqrt[4]{3}}

Agora basta racionalizar a fração.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}