• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Números reais] Demonstração

[Números reais] Demonstração

Mensagempor +danile10 » Dom Fev 03, 2013 19:39

Mostre, utilizando propriedades básicas, que:

[/tex]

Eu tenho a resposta deste exercício, mas gostaria que me ajudassem a melhor compreendê-la:

Resposta: Por hipótese ax = a e como [tex]a\neq0\, existe\, {a}^{-1}
Logo[tex]\, {a}^{-1}(ax) = x\, por um lado[/tex]
e por outro
\,{a}^{-1}(ax)={a}^{-1}(a)\, = 1\, por outro.
\,Logo\, x=1

\,Não saberia reproduzir a resolução se me deparasse com este exercício
no futuro... Eu sei que é usada a propriedade de dado um número
\,a\neq0\,,este número possui inverso[tex] \,{a}^{-1} \,tal\, que \,a . {a}^{-1} = 1\,[/tex]

Mas este começo[tex]\, {a}^{-1} (ax)= x\,[/tex] me parece confuso...
+danile10
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Fev 03, 2013 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Curso de Bases Matemáticas
Andamento: cursando

Re: [Números reais] Demonstração

Mensagempor e8group » Dom Fev 03, 2013 20:02

Não conseguir visualizar a resposta .

Propriedade : Existência de inverso

Para todo real b \neq 0 ,existe um único real c tal que b\cdot c = 1 .Tal c denomina-se oposto de b , c= b^{-1} .

Portanto ,

a\cdot x = a  , a\neq 0 \iff  (a\cdot x )\cdot a^{-1} = a \cdot a^{-1} \iff  x (a \cdot a^{-1} ) = 1 \iff x \cdot 1 = 1 ou seja x = 1 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Números reais] Demonstração

Mensagempor e8group » Dom Fev 03, 2013 20:18

Você não compreendeu a^{-1} \cdot (ax) = x ?

Veja que : x = 1 \cdot x (Existência de elemento neutro )

Mas , 1 = a\cdot a^{-1}  , a \neq 0 (Existência de inverso )

Disso concluímos que x = (a\cdot a^{-1} ) x    = a^{-1} (a\cdot x) = x (Associativa )
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Números reais] Demonstração

Mensagempor +danile10 » Dom Fev 03, 2013 21:14

Não entendi ainda como isso me ajuda a provar que Se ax = a, x = 1...

Não entendi ainda menos aquela por outro lado...

Na minha cabeça vejo assim:

Assumindo x=1, pela propriedade do inverso

a . a^-1 = 1, então x = a . a^-1

Logo ax = a é o mesmo que:
a (a.a^-1) = a


Não entendo como a conclusão com a associativa vai ajudar a resolver o exercício..., mas também não acho que o que eu esteja pensando
vá me ajudar a resolvê-lo...
+danile10
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Fev 03, 2013 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Curso de Bases Matemáticas
Andamento: cursando

Re: [Números reais] Demonstração

Mensagempor e8group » Seg Fev 04, 2013 20:50

Boa noite . Não pode assumir que x = 1 ,pois é extamente isto que deve demonstrar .

Antes de mostrarmos ,vamos ver alguns exemplos .

Qual o valor que x deve assumir ?

2x = 2 ???

5x = 5 ???

a'x = a'  \neq 0 ???

Parece razoável dizer que x é igual a 1 em todos os casos acima ,não é verdade ? Mas, como mostrar ?

Vamos tentar desenvolver 2x = 2 .

Temos :

x = x \cdot 1  = x\cdot \left(\frac{2}{2} \right) =  (x\cdot 2 )\frac{1}{2}  = 2x \cdot 2^{-1} .

Ora ,mas 2x = 2 então 2x \cdot 2^{-1} =  2 \cdot 2^{-1} = 2 \cdot \frac{1}{2} = 1 .

OBS.:Usamos todas as propriedades citadas no tópico acima .


Agora tente demonstrar que ax = a  , a \neq 0 \iff x = 1 .

Comente qualquer dúvida .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Lógica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.