• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Mínimos quadrados e Projeção Ortogonal

Mínimos quadrados e Projeção Ortogonal

Mensagempor Jhonata » Sex Jul 19, 2013 19:44

Eu conheço a aplicação dos mínimos quadrados, no entanto, não estou conseguindo resolver a seguinte questão:

A reta que melhor ajusta os dados da tabela:
[x --- y]
[1 -7]
[2 8]
[3 -13]
no sentido dos mínimos quadrados é y = 2 - 3x. Usando este fato, determine a projeção ortogonal do vetor (-7,8,-13) sobre <(1,2,3),(1,1,1)>.

Agradeço a todos pela atenção e ficarei mais grato ainda aquele que puder me ajudar.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Mínimos quadrados e Projeção Ortogonal

Mensagempor MateusL » Sáb Jul 20, 2013 17:12

Oi Jhonata.

O que simboliza <(1,2,3),(1,1,1)> ? É o produto escalar de dois vetores? Se for, a questão não tem sentido...

Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Mínimos quadrados e Projeção Ortogonal

Mensagempor Jhonata » Sáb Jul 20, 2013 17:30

MateusL escreveu:Oi Jhonata.

O que simboliza <(1,2,3),(1,1,1)> ? É o produto escalar de dois vetores? Se for, a questão não tem sentido...

Abraço!


Opa, perdoe-me ! Eu havia esquecido esse detalhe. É que minha apostila(um pouco louca rsrs) utiliza duas notações.
No caso, seria o espaço gerado pelos vetores, ou melhor: span{(1,2,3),(1,1,1)}.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Mínimos quadrados e Projeção Ortogonal

Mensagempor MateusL » Sáb Jul 20, 2013 18:34

Sem problemas!

Realmente não sei muito dessa parte, mas pesquisando aqui achei este teorema:

Se A é uma matriz m\times n com vetores-coluna linearmente independentes, então para cada matriz b de tamanho n\times 1, o sistema linear Ax=b tem uma única solução de mínimos quadrados. Esta solução é dada por:

x=(A^TA)^{-1}A^Tb

Além disso, se W é o espaço-coluna de A, então a projeção ortogonal de b em W é:

\text{proj}_W b=Ax=A(A^TA)^{-1}A^Tb


Vetor-coluna de A é um vetor formado pelos elementos de uma coluna de A
Espaço-coluna de A é o subespaço gerado pelas colunas de A.

Espero que isso ajude.

Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Mínimos quadrados e Projeção Ortogonal

Mensagempor Jhonata » Sáb Jul 20, 2013 18:53

Eu conheço o Teorema e é este mesmo que estou tentando aplicar nessa questão, mas não está dando certo.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Mínimos quadrados e Projeção Ortogonal

Mensagempor Jhonata » Sáb Jul 20, 2013 18:53

Eu conheço o Teorema e é este mesmo que estou tentando aplicar nessa questão, mas não está dando certo.

De qualquer forma, muito obrigado!

Desculpa o spam, ocorreu um problema com minha internet.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Mínimos quadrados e Projeção Ortogonal

Mensagempor MateusL » Dom Jul 21, 2013 00:41

Vou ver se consigo.

Queremos encontrar a e q tal que y=ax+q para todos os valores de x na tabela.
Ou seja, queremos resolver o seguinte sistema:

\begin{pmatrix}1&1\\2&1\\3&1\end{pmatrix}\cdot \begin{pmatrix}a\\q\end{pmatrix}=\begin{pmatrix}-7\\8\\-13\end{pmatrix}

Seja A=\begin{pmatrix}1&1\\2&1\\3&1\end{pmatrix}, x=\begin{pmatrix}a\\q\end{pmatrix} e b=\begin{pmatrix}-7\\8\\-13\end{pmatrix}.
Então podemos representar o sistema por Ax=b (não confundir este x com o x do enunciado).

Este não é um sistema linear compatível, mas sabemos que a reta que melhor ajusta os dados no sentido dos mínimos quadrados é:

y=2-3x

Então a=-3 e q=2, ou seja, a solução pelo método dos mínimos quadrados é x=\begin{pmatrix}-3\\2\end{pmatrix}.
É claro que usando estes valores para x, não encontrarás exatamente os valores para y, mas sim os valores que minimizam a soma dos quadrados da diferença entre o valor de y da tabela e o valor de y obtido utilizando este valor de x.

Seja W o subespaço formado pelos vetores-coluna de A.
Queremos encontrar a projeção ortogonal de b sobre W.

Pelo teorema que já postei acima:

... se W é o espaço-coluna de A, então a projeção ortogonal de b em W é:

\text{proj}_W b=Ax=A(A^TA)^{-1}A^Tb


Então:

\text{proj}_W b=Ax=\begin{pmatrix}1&1\\2&1\\3&1\end{pmatrix}\cdot \begin{pmatrix}-3\\2\end{pmatrix}=\begin{pmatrix}-3+2\\-6+2\\-9+2\end{pmatrix}=\begin{pmatrix}-1\\-4\\-7\end{pmatrix}

Acredito que seja isso.

Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Mínimos quadrados e Projeção Ortogonal

Mensagempor Jhonata » Dom Jul 21, 2013 10:49

É isso mesmo! Muito obrigado! Salvou meus estudos. rsrs

Estava quebrando a cabeça com essa questão até agora, mas era tão simples que até me senti estúpido.

Novamente, muito obrigado!
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D