• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral, como resolver??

Integral, como resolver??

Mensagempor manuoliveira » Qua Out 17, 2012 21:40

Estou estudando integrais por frações parciais mas travei na seguinte:

\int_{}^{}\frac{(5x + 4)}{(x^2 + 3x + 1)} dx

Tenho prova semana que vem então agradeço mesmo quem puder ajudar!! Obrigada desde já
manuoliveira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qui Abr 01, 2010 19:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: Integral, como resolver??

Mensagempor MarceloFantini » Qua Out 17, 2012 22:43

Segundo o Wolfram Alpha, a expansão em frações parciais será

\frac{5x+4}{x^2 +3x +1} = \frac{7 + 5 \sqrt{5}}{\sqrt{5} (2x + \sqrt{5} + 3)} + \frac{7 - 5 \sqrt{5}}{\sqrt{5} (-2x + \sqrt{5} - 3)}.

Agora basta integrar.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integral, como resolver??

Mensagempor e8group » Qui Out 18, 2012 11:10

Visto que ,


\frac{5x+4}{x^2 +3x +1}  = \frac{7 +5\sqrt{5}}{\sqrt{5}(2x+\sqrt{5}+3)} +\frac{7-5\sqrt{5}}{\sqrt{5}(-2x+\sqrt{5}-3)}  = \frac{1}{5}\left(\frac{7\sqrt{5} +25}{2x+\sqrt{5}+3} +\frac{7\sqrt{5} -25}{-2x+\sqrt{5}-3)}\right) .


Temos que ,



\int \frac{5x+4}{x^2 +3x +1} dx  = \int \frac{1}{5}\left(\frac{7\sqrt{5} +25}{2x+\sqrt{5}+3} +\frac{7\sqrt{5} -25}{-2x+\sqrt{5}-3)}\right) dx .


Escrevendo esta integral indefinida (antiderivada) como ,


\frac{1}{5}\left( (7\sqrt{5}+25)\int\frac{dx}{2x+\sqrt{5}+3}+(7\sqrt{5}-25)\int\frac{dx}{-2x+\sqrt{5}-3}\right )  .


Integrando cada termo ,obtemos que :

\int \frac{5x+4}{x^2 +3x +1} dx  =  \\ \\ \frac{1}{5} \left((7\sqrt{5}+25)2^{-1}ln(2x+\sqrt{5}+3) +(7\sqrt{5}-25)2^{-1}ln(-2x+\sqrt{5}-3) \right)  + C   =  \\ \\   \frac{(7\sqrt{5}+25)ln(2x+\sqrt{5}+3) +(-7\sqrt{5}+25)ln(-2x+\sqrt{5}-3)}{10} + C




OBS.: Se eu errei alguma "passagem " (ainda não vi este conteúdo ,resolvir por curiosidade),post aí por favor .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?