• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITES/L’ Hôpital] CALCULO I

[LIMITES/L’ Hôpital] CALCULO I

Mensagempor FelipeTURBO » Qui Jun 14, 2012 14:15

\lim_{x\rightarrow0{+}^{}}=\left(1+x \right)^\frac{1}{x}

A resposta desse exercício seria 'e'. Como consigo chegar nessa resposta, já fiz de uma maneira porem a professora disse estar errado.
FelipeTURBO
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Mar 23, 2012 23:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [LIMITES/L’ Hôpital] CALCULO I

Mensagempor joaofonseca » Qui Jun 14, 2012 14:46

Seja,\space n=\frac{1}{x}. Então \space x=\frac{1}{n}

Assim, quando \space x \to 0^+ \space,\space n \to +\infty.

Podemos escrever:

\lim_{n \to +\infty} \left(1+\frac{1}{n} \right)^n=e

Genericamente:

\lim_{n \to +\infty} \left(1+\frac{k}{n} \right)^n=e^k

Podemos encarar isto como algo que sabemos de antemão que é verdadeiro, sem necessidade de provar.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [LIMITES/L’ Hôpital] CALCULO I

Mensagempor LuizAquino » Qui Jun 14, 2012 15:03

FelipeTURBO escreveu:\lim_{x\rightarrow 0^{+}}=\left(1+x \right)^\frac{1}{x}

A resposta desse exercício seria 'e'. Como consigo chegar nessa resposta, já fiz de uma maneira porem a professora disse estar errado.


Eu presumo que o objetivo do exercício seja aplicar a Regra de L'Hospital para calcular esse limite.

Vamos chamar o resultado desse limite de L. Temos então que:

L = \lim_{x\to 0^+} \left(1+x\right)^\frac{1}{x}

Como \left(1+x\right)^\frac{1}{x} > 0 quando x\to 0^+ , podemos aplicar o logaritmo natural em ambos os membros dessa igualdade. Temos então que:

\ln L = \ln \left[\lim_{x\to 0^+} \left(1+x\right)^\frac{1}{x}\right]

Como a função ln é contínua em todo o seu domínio, ela pode "entrar" no limite. Desse modo, obtemos que:

\ln L =  \lim_{x\to 0^+} \ln \left[\left(1+x\right)^\frac{1}{x}\right]

\ln L =  \lim_{x\to 0^+} \frac{1}{x}\ln (1+x)

\ln L =  \lim_{x\to 0^+} \frac{\ln (1+x)}{x}

Agora note que esse limite é uma indeterminação do tipo 0/0. Isso significa que podemos aplicar a Regra de L'Hospital para resolvê-lo.

\ln L =  \lim_{x\to 0^+} \frac{[\ln (1+x)]^\prime}{(x)^\prime}

\ln L =  \lim_{x\to 0^+} \frac{\frac{1}{1 + x}}{1}

\ln L =  \lim_{x\to 0^+} \frac{1}{1 + x}

\ln L = \frac{1}{1 + 0}

\ln L = 1

L = e^1

L = e

Sendo assim, temos que:

\lim_{x\to 0^+} \left(1+x\right)^\frac{1}{x} = e

Observação

Uma curiosidade:

Regra de L’Hôpital, L’Hopital ou L’Hospital?
http://www.tecnosapiens.com.br/2010/03/ ... lhospital/
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}