• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo do comprimento do arco.

Integral Definida, por favor ajudem

Mensagempor brunojorge29 » Seg Abr 23, 2012 11:21

\int_{0}^{4}\frac{\sqrt[2]{{x}^{4}+1}}{{x}^{2}}

parei neste ponto, estou tentando calcular o comprimento de um arco
se puderem ajudar agradeço...
brunojorge29
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Set 30, 2011 09:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Integral Definida, por favor ajudem

Mensagempor Russman » Seg Abr 23, 2012 19:44

Brunojorge29, acredito que esta integral está mtu complicada para o calculo do comprimento de um arco. Tente postar o problema completo, pois talvez vc tenha interpretado algo errado.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Calculo do comprimento do arco.

Mensagempor brunojorge29 » Seg Abr 23, 2012 20:57

Calcule o comprimento do arco de \frac{1}{x} onde os pontos vao de 0,4 a 4.

Por favor essa é uma integral muito dificil.
Vcs sao os unicos que podem me ajudar a resolver esse calculo.
brunojorge29
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Set 30, 2011 09:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Calculo do comprimento do arco.

Mensagempor Russman » Seg Abr 23, 2012 22:32

A integral para este cálculo é

S=\int_{x=a}^{x=b}\sqrt[]{1+\frac{1}{{x}^{4}}} dx .

Bem complicado. Só te digo que em x=0 a função não se define assim um dos limites de integração não pode ser 0.

Da uma olhada aqui: http://www.wolframalpha.com/input/?i=in ... %2F2%29+dx
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.