• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calculo] integral por substuiçao

[calculo] integral por substuiçao

Mensagempor beel » Dom Nov 20, 2011 22:08

pra resolver essa integral por substituiçao \int_{1}^{2}x^3\sqrt[]{x^2 + 1}dx
tomei o "u" como x³, mas meu resultado deu muito errado... o u é esse mesmo?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] integral por substuiçao

Mensagempor MarceloFantini » Dom Nov 20, 2011 23:00

Tente u=x^2 +1, daí du = 2x\, dx, x^2 = u-1, logo \int_1^2 x^3 \sqrt{x^2 +1} \, dx = \int_2^5 (u-1) \sqrt{u} \, du.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [calculo] integral por substuiçao

Mensagempor beel » Ter Nov 22, 2011 13:29

Nessa ultima parte, nao teria que multiplicar (u-1) por x? ja que é x³ ( e x²= u -1 )

minha resposta ta o seguinte por enquanto:
(\frac{2u}{5})^5^/^2 - (\frac{2u}{3})^3^/^2...ai apliquei isso em 5 e depois em 2,
mas minha resposta deu um numero gigante com raiz inexata
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] integral por substuiçao

Mensagempor MarceloFantini » Ter Nov 22, 2011 19:14

Não, não tem pois eu já usei o x "extra" na mudança de variável, então não está faltando nada. E sim, a resposta é grande com números irracionais. Faltou um 2 dividindo tudo na minha resolução, conserte quando for resolver.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [calculo] integral por substuiçao

Mensagempor beel » Dom Nov 27, 2011 15:50

minha resposta deu isso...
\frac{1}{2}((\frac{2}{5}(\sqrt[]{3125}- \sqrt[]{32}) - \frac{2}{3}(\sqrt[]{125} - \sqrt[]{8}))
verifiquei naquele site que voce ja sugeriu, mas lá o resultado é uma aproximação com numeros decimais e precisava da resposta em fração...na verdade nas alternativas das respostas,todas possuem tem raiz cubica e denominador 8, tentei chegar em alguma resposta assim mas nao consegui
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}