• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calculo] integral pelo TFC

[calculo] integral pelo TFC

Mensagempor beel » Sex Nov 18, 2011 14:41

Como encontro \frac{d}{dx}\int_{x}^{\Pi}cos(t)dt pelo teorema fundamental do calculo?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] integral pelo TFC

Mensagempor MarceloFantini » Sex Nov 18, 2011 16:29

Note que o teorema fundamental do cálculo diz que \frac{\textrm{d}}{\textrm{d}t} \int_a^t f(x) \, \textrm{d}x = f(t), logo:

\frac{\textrm{d}}{\textrm{d}x} \int_x^{\pi} \cos t \, \textrm{d}t = - \frac{\textrm{d}}{\textrm{d}x} \int_{\pi}^x \cos t \, \textrm{d}t = - \cos x
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [calculo] integral pelo TFC

Mensagempor beel » Sáb Nov 19, 2011 23:44

o resultado sera sempre -f(x)?Na verdade nao entendi muito bem...o teorema fundamental do calculo ( "parte 1") me parece ser algo abstrato, nao consegui entendo-lo muito bem...
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] integral pelo TFC

Mensagempor MarceloFantini » Dom Nov 20, 2011 10:00

Releia a minha mensagem, perceba que no começo eu mostrei o que o teorema fundamental do cálculo diz e em seguida apliquei. O resultado saiu negativo porque eu inverti a ordem de integração, e quando fazemos isso devemos inverter o sinal.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}