• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo 2] Taxa de variação

[Cálculo 2] Taxa de variação

Mensagempor -civil- » Qui Set 29, 2011 15:55

O raio de um cone circular reto aumenta 1,8 pol/s mas a altura decresce a taxa de 2,5 pol/s. Qual a taxa de variação do volume do cone, quando o raio vale 120 pol e altura h = 140 pol?

Eu li a matéria no Stewart mas não entendi muito bem. Eu simplesmente calculei as derivadas parciais em relação ao volume, no ponto (120,140). Está certo resolver desse jeito?
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Cálculo 2] Taxa de variação

Mensagempor LuizAquino » Sex Set 30, 2011 18:55

Sabemos que o volume de um cone circular reto, com raio da base r e altura h, é dado por V = \frac{1}{3}\pi r^2 h .

Podemos então enxergar o volume como uma função de duas variáveis, isto é, podemos escrever V(r,\,h) = \frac{1}{3}\pi r^2 h .

Nesse exercício, tanto o raio quanto a altura estão variando com o passar do tempo. Dessa forma, podemos enxergar o raio e a altura como funções do tempo.

Isso significa que no final das contas V também é uma função do tempo.

Aplicando então a regra da cadeia para derivar V em relação ao tempo, temos que:

\frac{dV}{dt} = \frac{\partial V}{\partial r}\frac{dr}{dt} + \frac{\partial V}{\partial h}\frac{dh}{dt}

Sendo assim, temos que:

\frac{dV}{dt} = \frac{2\pi r h}{3}\frac{dr}{dt} + \frac{\pi r^2}{3}\frac{dh}{dt}

Agora basta aplicar os dados do exercício, de onde temos que \frac{dr}{dt} = 1,8, \frac{dh}{dt} = -2,5, r = 120 e h = 140 .
Editado pela última vez por LuizAquino em Sáb Out 01, 2011 09:34, em um total de 1 vez.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Cálculo 2] Taxa de variação

Mensagempor -civil- » Qua Out 05, 2011 05:36

Agora sim, entendi. Muito obrigada!
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.