• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite] assintotas duvida

[limite] assintotas duvida

Mensagempor beel » Ter Set 06, 2011 13:37

O "candidato" a assintota vertical, é aquele numero (a) que zera o denominador certo?Tenho que fazer então \lim_{x\rightarrow ^- ^+ a} ( limites laterais). Como confirmo se esse numero a, é a assintota vertical?
Se por exemplo o \lim_{x\rightarrow ^-  a} = - \infty

\lim_{x \rightarrow ^+ a} = + \infty
( limites laterias nao coincidem...)

A assintota existe?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [limite] assintotas duvida

Mensagempor LuizAquino » Ter Set 06, 2011 20:46

isanobile escreveu:O "candidato" a assintota vertical, é aquele numero (a) que zera o denominador certo?

Mais ou menos isso. Lembre-se que a assíntota vertical é uma reta e não um número. Desse modo, o certo é dizer que a reta x = a é uma candidata a assíntota vertical.

isanobile escreveu:Tenho que fazer então \lim_{x\to a^-} f(x) e \lim_{x\to a^+} f(x) ( limites laterais).

Sim.

isanobile escreveu:Como confirmo se esse numero a, é a assintota vertical?

A reta x = a será uma assíntota vertical se qualquer um dos três limites acontecer:

(i) \lim_{x\to a} f(x) = \infty

(ii) \lim_{x\to a^-} f(x) = \infty

(iii) \lim_{x\to a^+} f(x) = \infty

(*) Vale lembrar que o resultado do limite pode ser mais infinito ou menos infinito.

isanobile escreveu:Se por exemplo o \lim_{x\to a^-} f(x) = - \infty e \lim_{x \to a^+} f(x)= + \infty
( limites laterias nao coincidem...)

A assintota existe?

Sim, existe a assíntota. O que não existe seria o limite \lim_{x\to a} f(x).

Por exemplo, considere a função f(x) = \frac{1}{x-1} .

Note que temos:

\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} \frac{1}{x-1} = -\infty

\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} \frac{1}{x-1} = +\infty

Desse modo, não existe o limite \lim_{x\to 1} f(x) (já que os limites laterais são distintos), mas a reta x = 1 existe e representa uma assíntota vertical do gráfico de f. Veja a figura abaixo.

grafico.png
grafico.png (4.81 KiB) Exibido 1425 vezes
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [limite] assintotas duvida

Mensagempor beel » Dom Out 16, 2011 16:57

Ok,obrigada.
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.