• Anúncio Global
    Respostas
    Exibições
    Última mensagem

limites!

limites!

Mensagempor andrepires » Dom Ago 29, 2010 15:05

como resolvo esse limite:::

\lim_{-1}\sqrt[3]{x+2}-1/x+1
andrepires
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Ago 29, 2010 14:52
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: limites!

Mensagempor MarceloFantini » Seg Set 06, 2010 12:45

O x+1 é denominador de tudo ou apenas de -1?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: limites!

Mensagempor andrepires » Seg Set 06, 2010 12:52

DE TUDO
andrepires
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Ago 29, 2010 14:52
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: limites!

Mensagempor MarceloFantini » Seg Set 06, 2010 13:25

f(x) = \frac{ \sqrt[3]{x+2} -1 }{x+1} \cdot \frac{(\sqrt[3]{x+2})^2 + (\sqrt[3]{x+2}) \cdot (-1) + (-1)^2}{(\sqrt[3]{x+2})^2 + (\sqrt[3]{x+2}) \cdot (-1) + (-1)^2}

= \frac{x+2 -1}{(x+1) \cdot ( ( \sqrt[3]{x+2} )^2 + ( \sqrt[3]{x+2} \cdot (-1)) + (-1)^2 )}

= \frac{1}{ ( \sqrt[3]{x+2} )^2 + ( \sqrt[3]{x+2} \cdot (-1)) + (-1)^2 }

\therefore \lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{1}{ ( \sqrt[3]{x+2} )^2 + ( \sqrt[3]{x+2} \cdot (-1)) + (-1)^2 } = 1
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.