• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites

Limites

Mensagempor diogoaredes » Ter Jul 20, 2010 08:51

2 - Determine os valores dos seguintes limites, caso existam:

\lim_{x\rightarrow0} \frac{3{x}^{2}-8}{x-2}




\lim_{x\rightarrow2} \left( 3{x}^{2}-5x+2\right)




\lim_{x\rightarrow0} \left({x}^{5}-6{x}^{4}+7 \right)



\lim_{x\rightarrow3} \left({x-1}^{2} \right)\left(x+1 \right)



\lim_{x\rightarrow5} \frac{x+3}{5-x}



\lim_{x\rightarrow2} \frac{x+1}{x+2}



\lim_{x\rightarrow1} \frac{{x}^{2}-1}{x-1}



\lim_{x\rightarrow5} \frac{x+3}{5-x}



\lim_{x\rightarrow2} \frac{x+1}{x+2}



\lim_{x\rightarrow1} \frac{{x}^{2}-1}{x-1}



\lim_{x\rightarrow2} \frac{{x}^{2}-x-6}{{x}^{2}+3x+2}



\lim_{x\rightarrow4} \frac{\sqrt[]{x}-2}{x-4}



\lim_{x\rightarrow3} \frac{{x}^{2}-9}{x-3}



\lim_{x\rightarrow1} \frac{{x}^{2} +4x-5}{{x}^{2}-1}



\lim_{x\rightarrow1} \frac{\sqrt[]{x}-1}{x-1}



\lim_{x\rightarrow4} \frac{\sqrt[]{x}-2}{x-4}



\lim_{x\rightarrow9} \frac{\sqrt[]{x}-3}{x-9}



\lim_{x\rightarrow2} \frac{{x}^{3}-8}{{x}^{2}-4}



\lim_{x\rightarrow2} \frac{{x}^{3}-8x+8}{{3x}^{3}-{15x}^{2}+16x+4}


Pessoal, por favor, me ajudem a resolver estas questões de limite, estou precisando muito.
Anexos

[O anexo não pode ser exibido, pois a extensão pdf foi desativada pelo administrador.]

diogoaredes
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Jul 06, 2010 09:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas de Informação
Andamento: cursando

Re: Limites

Mensagempor Molina » Ter Jul 20, 2010 14:29

Boa tarde, Diogo.

Antes de sair resolvendo essas questões para você, sugiro que você leia algumas propriedades dos limites. São propriedades fáceis e pelo o que pude olhar muita de suas dúvidas poderão ser sanadas com elas.

Por exemplo, uma propriedade básica é que O limite da soma é a soma dos limites.

Com isso você já pode resolver a segunda questão:

\lim_{x\rightarrow2} \left( 3{x}^{2}-5x+2\right)

Usando essa propriedade podemos escrever isto da seguinte forma:

\lim_{x\rightarrow2} 3{x}^{2}- \lim_{x\rightarrow2} 5x+ \lim_{x\rightarrow2} 2

Agora é só aplicar o limite:

3*2^2 - 5*2 + 2=4

Estou aqui pra te ajudar.

Utilize as outras propriedades que te indiquei para resolver as outras questões.

Bom estudo! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59