• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral indefinida

Integral indefinida

Mensagempor Bravim » Sex Fev 21, 2014 22:31

Gostaria de saber essa integral indefinida:
f(x)=\int_{} \frac{dy}{(x^2+y^2)^\frac{3}{2}}
Provavelmente deve se fazer por substituição, mas eu não estou conseguindo resolver....
Obrigado,
Haroldo
Imagem
Avatar do usuário
Bravim
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Qui Out 03, 2013 03:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integral indefinida

Mensagempor Man Utd » Sáb Fev 22, 2014 12:14

f(x)=\int_{} \; \frac{dy}{(x^2+y^2)^\frac{3}{2}}


f(x)=\int_{} \; \frac{dy}{ \left (x^2* \left(1+\frac{y^2}{x^2}  \right) \right)^\frac{3}{2}}



f(x)=\int_{} \; \frac{dy}{ \sqrt{ \left( x^2* \left(1+\frac{y^2}{x^2}  \right)  \right)^{3} }}



f(x)=\frac{1}{x^3}*\int_{}  \;\frac{dy}{ \sqrt{ \left( 1+\frac{y^2}{x^2} \right)^{3} }}



f(x)=\frac{1}{x^3}*\int_{} \; \frac{dy}{ \sqrt{ \left( 1+ \left(\frac{y}{x} \right)^{2} \right)^{3} }}



\frac{y}{x}=tg\theta \;\; \rightarrow \;\;  dy=x*sec^{2} \theta \; d\theta


f(x)=\frac{1}{x^3}*\int_{} \; \frac{x*sec^{2} \theta }{ \sqrt{ \left( 1+ (tg \theta)^{2} \right)^{3} }} \; d\theta


f(x)=\frac{1}{x^2}*\int_{}  \; \frac{sec^{2} \theta }{ \sqrt{ ( sec^{2} \theta)^{3} }} \; d\theta



f(x)=\frac{1}{x^2}*\int_{} \; \frac{1}{ sec\theta} \; d\theta


f(x)=\frac{1}{x^2}*\int_{} \; cos\theta \; d\theta


f(x)=\frac{sen\theta}{x^2} +C


f(x)=\frac{sen\theta}{x^2} +C


f(x)=\frac{\frac{y}{\sqrt {y^2+x^2 } }}{x^2} +C


f(x)=\frac{y}{x^2*\sqrt {y^2+x^2 } } +C
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Integral indefinida

Mensagempor Bravim » Seg Fev 24, 2014 01:14

Cara, valeu! Estava com um branco nessa integral xD!
Imagem
Avatar do usuário
Bravim
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Qui Out 03, 2013 03:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59