• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada no ponto de descontinuidade - capacitor.

Derivada no ponto de descontinuidade - capacitor.

Mensagempor Sobreira » Dom Dez 08, 2013 14:27

Amigos,

Tenho a seguinte dúvida:

Há uma afirmação que no capacitor não pode haver variação brusca de tensão em seus terminais. Lendo no livro o autor justifica que isto não é possível pois haverá a necessidade de uma corrente infinita. Mas aí que não entendi:
Pelo meu entender isto parte do problema que a derivada estará no ponto de descontinuidade da função, ou seja, indefinido e nisto a corrente terá que ir a infinito para compensar.
Mas e quando não há variação de tensão ??? Quando o gráfico v/t é uma reta?? a derivada também será 0 e portanto precisaríamos de uma corrente infinita, ou seja, para uma tensão constante a corrente no capacitor seria infinito e não zero.
i=C\frac{dv}{dt}
Anexos
capacitor.jpg
capacitor.jpg (11.5 KiB) Exibido 7250 vezes
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Derivada no ponto de descontinuidade - capacitor.

Mensagempor young_jedi » Ter Dez 10, 2013 17:52

no primeiro caso, em que ha descontinuidade da função nos temos que a derivada tende para infinito

\frac{dv}{dt}\to \infty

no caso da reta a derivada é igual a zero portanto a corrente é igual a zero.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}