por Lenin » Qua Set 25, 2013 21:21
pessoal, tenho dúvida em uma questão de limites.
Para cada função f a seguir, determine D(f) e, se possível, a função g: R->R, tal que g é contínua e g(x) = f(x), para todo x pertencente D(x):
a)

eu fiz da seguinte forma: como ele fala que g(x)=f(x) eu fui usando o f(x), e acho que estou errado nessa parte. Logo eu fiz o seguinte.

porém o f(3) não está definido..quando eu faço dá uma indeterminação (não sei se para este caso tem que tirar a indeterminação) porém, sou leigo em calculo, comecei agora. Eu queria entender essa questão, desde já agradeço..preciso muito dessa questão até amanhã..se alguem puder muito me ajudar..obrigado
-
Lenin
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qua Abr 10, 2013 23:08
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Cursinho
- Andamento: cursando
por Man Utd » Qua Set 25, 2013 21:35
Lenin escreveu:pessoal, tenho dúvida em uma questão de limites.
Para cada função f a seguir, determine D(f) e, se possível, a função g: R->R, tal que g é contínua e g(x) = f(x), para todo x pertencente D(x):
a)

eu fiz da seguinte forma: como ele fala que g(x)=f(x) eu fui usando o f(x), e acho que estou errado nessa parte. Logo eu fiz o seguinte.

porém o f(3) não está definido..quando eu faço dá uma indeterminação (não sei se para este caso tem que tirar a indeterminação) porém, sou leigo em calculo, comecei agora. Eu queria entender essa questão, desde já agradeço..preciso muito dessa questão até amanhã..se alguem puder muito me ajudar..obrigado
olá
não tenho muita certeza,mas vamos lá

:
o dominio de f será

que é o conjunto dos números reais exceto 3 que zeraria o denominador,já para obter uma função g(x) contínua e g(x) = f(x), para todo x pertencente ao dominio de f(x) :
vamos fatorar para tirar a indeterminação:

que para todo x pertecente ao dominio de f,a função possui a msm imagem e é continua.
espero que seja isso.
att mais

-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Continuidade de função
por marinalcd » Qui Ago 23, 2012 20:52
- 0 Respostas
- 1048 Exibições
- Última mensagem por marinalcd

Qui Ago 23, 2012 20:52
Funções
-
- continuidade da função
por Sherminator » Sex Nov 16, 2012 13:13
- 15 Respostas
- 12169 Exibições
- Última mensagem por Sherminator

Ter Nov 20, 2012 12:55
Cálculo: Limites, Derivadas e Integrais
-
- Estudo da [continuidade] de uma função
por Teh_eng » Qui Mai 03, 2012 13:43
- 1 Respostas
- 1375 Exibições
- Última mensagem por Russman

Qui Mai 03, 2012 14:52
Cálculo: Limites, Derivadas e Integrais
-
- [Continuidade de função] Demonstração
por Gustavo Gomes » Qui Nov 08, 2012 21:41
- 2 Respostas
- 1599 Exibições
- Última mensagem por Gustavo Gomes

Sex Nov 09, 2012 21:33
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Continuidade - Função
por raimundoocjr » Ter Mai 07, 2013 20:16
- 1 Respostas
- 1249 Exibições
- Última mensagem por e8group

Ter Mai 07, 2013 21:16
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.