• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Dois caminhos e duas respostas

[Integral] Dois caminhos e duas respostas

Mensagempor KleinIll » Sex Fev 22, 2013 11:30

Resolva a seguinte integral: f(x) = \int_{}^{}{\left(x + 2 \right)}^{2}dx

1ª Resolução:
f(x) = \int_{}^{}{\left(x + 2 \right)}^{2}dx

f(x) = \int_{}^{}\left( {x}^{2} + 4x + 4 \right)dx

f(x) = \frac{{x}^{3}}{3} + 2{x}^{2}+ 4x + c



2ª Resolução:
f(x) = \int_{}^{}{\left(x + 2 \right)}^{2}dx

u = x + 2; du = 1dx

\int_{}^{}{u}^{2}du

\frac{{u}^{3}}{3} + c

\frac{{\left( x + 2 \right)}^{3}}{3}

\frac{{x}^{3}+6{x}^{2}+12x+8}{3}

\frac{{x}^{3}}{3}+2{x}^{2}+4x+\frac{8}{3}+c

A minha dúvida está no resultado pois ambos são iguais exceto pelo 8/3 que o segundo método, de substituição, trouxe. Tenho certeza de que há algo errado e ficarei grato se alguém puder esclarecer esta dúvida.
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Integral] Dois caminhos e duas respostas

Mensagempor young_jedi » Sex Fev 22, 2013 12:39

na verdade as duas maneiras que voce fez estão corretas
o que muda e o valor das constantes que aparacem na integração
em uma voce tem

\frac{x^3}{3}+2x^2+4x+c

e na outra

\frac{x^3}{3}+2x^2+4x+\frac{8}{3}+k

portanto

c=\frac{8}{3}+k
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral] Dois caminhos e duas respostas

Mensagempor KleinIll » Sex Fev 22, 2013 12:57

Ok, então isto significa que dependendo do método pode haver uma constante diferente apesar da proposta de cada método ter a mesma meta?
Você pode explicar de uma forma simplificada o porquê da diferença da constante entre os métodos?
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Integral] Dois caminhos e duas respostas

Mensagempor young_jedi » Sex Fev 22, 2013 19:09

na verdade quando voce calcula a integral voce vai ter tambem um valor constatnte em função da integraçao
o qual voce nao sabe qual é mais que pode ser determinado se o exercicio oferecer um dado adicional.

neste caso as duas resposta são soluções gerais da integral, ambas estão corretas.

a questão é a seguinte, na resposta do segundo metodo voce pode fazer o seguinte

\frac{x^3}{3}+2x^2+4x+\frac{8}{3}+c=\frac{x^3}{3}+2x^2+4x+k

pois voce sabe que tanto \frac{8}{3}, com c, são constantes então voce pode espressa-las em uma mesma constatnte k
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral] Dois caminhos e duas respostas

Mensagempor KleinIll » Sáb Fev 23, 2013 16:17

young_jedi, eu entendo a sua explicação, mas o fato é que resolvendo o produto notável e depois integrando ou fazendo pelo método da substituição, teoricamente, deveriam alcançar os mesmos resultados, não concorda? Os resultados foram os mesmos, mas a diferença das constantes é, na minha opinião (eu não tenho certeza absoluta), uma distorção entre os métodos que eu desconheço a origem. Concordo com tudo que vc disse e entendo seu ponto de vista, mas, pelo sim ou pelo não, a diferença tem uma explicação além desta. Obrigado pela(s) ajuda(s), caiu como uma luva.
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D