por fraol » Seg Fev 11, 2013 18:20
Olá boa tarde,
A questão está um pouco velha mas, mesmo assim, vamos lá:
A ideia de continuidade está relacionada com vizinhança. Sem muita formalidade, essa definição quer dizer que se para todos os

no domínio da função e na vizinhança de um determinado

existirem os

correspondentes, na imagem de

e na vizinhança de

então a função é contínua em

. O delta e o epsilon na sentença da definição servem para determinar exatamente qual é a vizinhança que está se tratando.
Eu fiz uma figura. Nela usei um delta de 0.1 para exemplificar:
Nesse caso o

. Veja que todos os

na vizinhança

de

possuem um

na vizinhança

de

.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função continua
por Amparo » Dom Mar 09, 2008 16:14
- 1 Respostas
- 3834 Exibições
- Última mensagem por admin

Qui Mar 13, 2008 12:52
Funções
-
- função continua
por alexandreredefor » Dom Jul 17, 2011 18:23
- 4 Respostas
- 3007 Exibições
- Última mensagem por Molina

Seg Jul 18, 2011 11:42
Cálculo: Limites, Derivadas e Integrais
-
- Função Contínua
por Ana Maria da Silva » Sex Mar 14, 2014 18:55
- 1 Respostas
- 1496 Exibições
- Última mensagem por Russman

Sáb Mar 15, 2014 10:45
Cálculo: Limites, Derivadas e Integrais
-
- [Função continua]
por stepg_ » Dom Set 14, 2014 13:41
- 1 Respostas
- 1565 Exibições
- Última mensagem por jcmatematica

Qui Set 25, 2014 23:27
Cálculo: Limites, Derivadas e Integrais
-
- Função contínua
por felipe_pereira96 » Qua Jan 27, 2016 12:17
- 1 Respostas
- 1688 Exibições
- Última mensagem por adauto martins

Qui Jan 28, 2016 10:00
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.