• Anúncio Global
    Respostas
    Exibições
    Última mensagem

volume de sólido por rotação

volume de sólido por rotação

Mensagempor hmspriss » Qui Set 23, 2010 11:13

o exercício pede para calcular o volume dex^2+y^2\leq2 e 0\leq y\leq x o resultado era para ser 4\pi(\sqrt[]{2}-1)/3
fiz os calculo usando a fórmula v=\pi \int_{a}^{b} f(x)^2dx mas o resultado deu 4\pi/3, acho que o problema está no intervalo da integração, eu coloquei de 0 até 1, qual seria o intervalo correto?
hmspriss
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Set 23, 2010 10:59
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: volume de sólido por rotação

Mensagempor MarceloFantini » Sex Set 24, 2010 01:32

O raio da semi-circunferência é \sqrt{2}, e não 1. Logo:

y = \sqrt {2 - x^2} = f(x)

V = \pi \int_0^{\sqrt{2}} (f(x))^2 \; dx = \pi \int_0^{\sqrt{2}} (2- x^2) dx = \pi (\int_0^{\sqrt{2}} 2 \; dx - \int_0^{\sqrt{2}} x^2 \; dx) = \pi \left( 2x \right)_0^{\sqrt{2}} - \pi \left( \frac{x^3}{3} \right)_0^{\sqrt{2}} = 2 \pi \sqrt{2} - \frac{2 \pi \sqrt{2}}{3} = \frac { 6 \pi \sqrt{2} - 2 \pi \sqrt{2} }{3} = \frac{4 \pi \sqrt{2}}{3}

Talvez eu tenha esquecido alguma coisa.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.