• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Otimização de derivadas

Otimização de derivadas

Mensagempor bilsilva » Sáb Ago 14, 2010 17:52

Não consigo resolver esse problema:
"Qual é o retângulo máximo inscrito num circulo de raio 12 cm ? "
bilsilva
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Ago 14, 2010 17:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Otimização de derivadas

Mensagempor Douglasm » Dom Ago 15, 2010 22:35

O que queremos maximizar é a área "S", dada por:

S = a.b

Para podermos verificar o ponto de máximo, devemos primeiro escrever "S" em função de uma variável (nesse caso escolherei "a"). É fácil observar a seguinte relação na circunferência:

\left(\frac{a}{2}\right)^2 + \left(\frac{b}{2}\right)^2 = 12^2 \;\therefore

b = \sqrt{576 - a^2}

Substituindo em "S":

S = a.\sqrt{576 - a^2}

O que temos que fazer agora é encontrar a primeira derivada desta função e igualá-la a zero (posteriormente, a segunda derivada garantirá de que se trata de um ponto de máximo, mas vou omití-la aqui). Logo:

S' = \frac{576 - 2a^2}{\sqrt{576 - a^2}}

Igualando a zero:

\frac{576 - 2a^2}{\sqrt{576 - a^2}} = 0 \;\therefore

a = \sqrt{288}

Finalmente, substituindo na relação existente na circunferência, encontramos:

\left(\frac{\sqrt{288}}{2}\right)^2 + \left(\frac{b}{2}\right)^2 = 12^2 \;\therefore

b = \sqrt{288} = a

Concluímos que o retângulo com a máxima área a ser inscrito numa circunferência de raio 12 cm é um quadrado de lado \sqrt{288} cm.

Obs: Resolvi omitir também o desenvolvimento dos cálculos mas caso haja alguma dúvida nesse sentido é só dizer.

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.