• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites com polinomio

Limites com polinomio

Mensagempor Rosi7 » Dom Mai 03, 2015 13:55

\lim_{1}\sqrt[3]{t}-1/\sqrt{t}-1

\lim_{1}\sqrt[3]{{t}^{6}}-1/\sqrt{{t}^{6}}-1

\lim_{1}{t}^{\frac{6}{3}}-1/{t}^{\frac{6}{2}}-1

\lim_{1}{t}^{2}-1/{t}^{3}-1



Consegui ir até o polinômio, mas não consigo abri-lo. Esta questão caiu em uma prova.. e a resposta a minha foi 2, porém já sei que está errada, pois consegui encontrar em um slide, mas só tem a resposta 2/3. O que estou fazendo errado? Isso está certo? Como chego em 2/3?
Rosi7
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Mai 02, 2015 18:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Limites com polinomio

Mensagempor ViniciusAlmeida » Seg Mai 04, 2015 09:41

Olá, Rosi.
Você não pode elevar os "t" a 6, pois dessa forma irá resultar em \sqrt[3]{t^6} = t^2 e na sua função original o valor é \sqrt[3]{t}. Uma forma de resolução é:

\lim_{x\rightarrow 1} (\frac{\sqrt[3]{t} - 1}{\sqrt{t} - 1}) = \lim_{x\rightarrow 1} (\frac{\sqrt[3]{t} - 1}{\sqrt{t} - 1})*(\frac{\sqrt{t} + 1}{\sqrt{t} + 1}) = \frac{(\sqrt[3]{t} - 1)*(\sqrt{t} + 1)}{t - 1}

Repare que escrever t-1 é a mesma coisa que escrever \sqrt[3]{t^3} - 1^3, o que é uma diferença de cubos e pode ser fatorada (veja uma explicação melhor sobre essa fatoração aqui: http://www.brasilescola.com/matematica/ ... erenca.htm)

\lim_{x\rightarrow 1}  \frac{(\sqrt[3]{t} - 1)*(\sqrt{t} + 1)}{\sqrt[3]{t^3} - 1^3} = \frac{(\sqrt[3]{t} - 1)*(\sqrt{t} + 1)}{(\sqrt[3]{t} - 1)((\sqrt[3]{t})^2 + \sqrt[3]{t} + 1)} = \frac{(\sqrt{t} + 1)}{((\sqrt[3]{t})^2 + \sqrt[3]{t} + 1)}

A partir dai é só você substituir 1, pois não há mais indeterminação, e encontrará 2/3
PS: Essa fatoração de cubos é muito útil nos limites, recomendo que dê uma olhada mesmo no link que deixei
ViniciusAlmeida
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Seg Fev 09, 2015 12:13
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Limites com polinomio

Mensagempor Rosi7 » Dom Mai 10, 2015 20:43

Muito obrigada Vinicius! Bom domingo!
Rosi7
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Mai 02, 2015 18:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.