por Rosi7 » Dom Mai 03, 2015 13:55
![\lim_{1}\sqrt[3]{t}-1/\sqrt{t}-1
\lim_{1}\sqrt[3]{{t}^{6}}-1/\sqrt{{t}^{6}}-1
\lim_{1}{t}^{\frac{6}{3}}-1/{t}^{\frac{6}{2}}-1
\lim_{1}{t}^{2}-1/{t}^{3}-1 \lim_{1}\sqrt[3]{t}-1/\sqrt{t}-1
\lim_{1}\sqrt[3]{{t}^{6}}-1/\sqrt{{t}^{6}}-1
\lim_{1}{t}^{\frac{6}{3}}-1/{t}^{\frac{6}{2}}-1
\lim_{1}{t}^{2}-1/{t}^{3}-1](/latexrender/pictures/7d8e32153f1eb3accbb9b45a47bbbf2a.png)
Consegui ir até o polinômio, mas não consigo abri-lo. Esta questão caiu em uma prova.. e a resposta a minha foi 2, porém já sei que está errada, pois consegui encontrar em um slide, mas só tem a resposta 2/3. O que estou fazendo errado? Isso está certo? Como chego em 2/3?
-
Rosi7
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Sáb Mai 02, 2015 18:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Física
- Andamento: cursando
por ViniciusAlmeida » Seg Mai 04, 2015 09:41
Olá, Rosi.
Você não pode elevar os "t" a 6, pois dessa forma irá resultar em
![\sqrt[3]{t^6} = t^2 \sqrt[3]{t^6} = t^2](/latexrender/pictures/87eed8d7a1d0ad9a503ea9dc0a30adbc.png)
e na sua função original o valor é
![\sqrt[3]{t} \sqrt[3]{t}](/latexrender/pictures/d3a30e3fd87bd1c2aa7b090fade6b05c.png)
. Uma forma de resolução é:
![\lim_{x\rightarrow 1} (\frac{\sqrt[3]{t} - 1}{\sqrt{t} - 1}) = \lim_{x\rightarrow 1} (\frac{\sqrt[3]{t} - 1}{\sqrt{t} - 1})*(\frac{\sqrt{t} + 1}{\sqrt{t} + 1}) = \frac{(\sqrt[3]{t} - 1)*(\sqrt{t} + 1)}{t - 1} \lim_{x\rightarrow 1} (\frac{\sqrt[3]{t} - 1}{\sqrt{t} - 1}) = \lim_{x\rightarrow 1} (\frac{\sqrt[3]{t} - 1}{\sqrt{t} - 1})*(\frac{\sqrt{t} + 1}{\sqrt{t} + 1}) = \frac{(\sqrt[3]{t} - 1)*(\sqrt{t} + 1)}{t - 1}](/latexrender/pictures/6e7c983eb4f9f820c8080e9aa110743e.png)
Repare que escrever t-1 é a mesma coisa que escrever
![\sqrt[3]{t^3} - 1^3 \sqrt[3]{t^3} - 1^3](/latexrender/pictures/320ccdf1985342d62aa481d64d763e26.png)
, o que é uma diferença de cubos e pode ser fatorada (veja uma explicação melhor sobre essa fatoração aqui:
http://www.brasilescola.com/matematica/ ... erenca.htm)
![\lim_{x\rightarrow 1} \frac{(\sqrt[3]{t} - 1)*(\sqrt{t} + 1)}{\sqrt[3]{t^3} - 1^3} = \frac{(\sqrt[3]{t} - 1)*(\sqrt{t} + 1)}{(\sqrt[3]{t} - 1)((\sqrt[3]{t})^2 + \sqrt[3]{t} + 1)} = \frac{(\sqrt{t} + 1)}{((\sqrt[3]{t})^2 + \sqrt[3]{t} + 1)} \lim_{x\rightarrow 1} \frac{(\sqrt[3]{t} - 1)*(\sqrt{t} + 1)}{\sqrt[3]{t^3} - 1^3} = \frac{(\sqrt[3]{t} - 1)*(\sqrt{t} + 1)}{(\sqrt[3]{t} - 1)((\sqrt[3]{t})^2 + \sqrt[3]{t} + 1)} = \frac{(\sqrt{t} + 1)}{((\sqrt[3]{t})^2 + \sqrt[3]{t} + 1)}](/latexrender/pictures/a87ac0cb804d72967f05aad098ce05d5.png)
A partir dai é só você substituir 1, pois não há mais indeterminação, e encontrará 2/3
PS: Essa fatoração de cubos é muito útil nos limites, recomendo que dê uma olhada mesmo no link que deixei
-
ViniciusAlmeida
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Seg Fev 09, 2015 12:13
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Rosi7 » Dom Mai 10, 2015 20:43
Muito obrigada Vinicius! Bom domingo!
-
Rosi7
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Sáb Mai 02, 2015 18:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Física
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [polinômio]Relações de Girard + raízes de polinômio
por matano2104 » Qui Set 05, 2013 17:02
- 1 Respostas
- 7163 Exibições
- Última mensagem por young_jedi

Qui Set 05, 2013 17:57
Polinômios
-
- [limites] reciso de ajuda nessa questão de limites raiz quad
por alexia » Ter Nov 15, 2011 19:55
- 1 Respostas
- 5412 Exibições
- Última mensagem por LuizAquino

Qua Nov 16, 2011 15:16
Cálculo: Limites, Derivadas e Integrais
-
- [Limites]Preciso de ajuda para calcular alguns limites
por Pessoa Estranha » Ter Jul 16, 2013 17:15
- 2 Respostas
- 4759 Exibições
- Última mensagem por LuizAquino

Qua Jul 17, 2013 09:12
Cálculo: Limites, Derivadas e Integrais
-
- Polinômio
por Cleyson007 » Qua Mai 13, 2009 15:18
- 3 Respostas
- 3837 Exibições
- Última mensagem por Molina

Sex Mai 15, 2009 06:46
Polinômios
-
- Polinômio
por Cleyson007 » Qua Jul 15, 2009 23:17
- 3 Respostas
- 2466 Exibições
- Última mensagem por DanielFerreira

Ter Set 22, 2009 12:06
Polinômios
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.