• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites com polinomio

Limites com polinomio

Mensagempor Rosi7 » Dom Mai 03, 2015 13:55

\lim_{1}\sqrt[3]{t}-1/\sqrt{t}-1

\lim_{1}\sqrt[3]{{t}^{6}}-1/\sqrt{{t}^{6}}-1

\lim_{1}{t}^{\frac{6}{3}}-1/{t}^{\frac{6}{2}}-1

\lim_{1}{t}^{2}-1/{t}^{3}-1



Consegui ir até o polinômio, mas não consigo abri-lo. Esta questão caiu em uma prova.. e a resposta a minha foi 2, porém já sei que está errada, pois consegui encontrar em um slide, mas só tem a resposta 2/3. O que estou fazendo errado? Isso está certo? Como chego em 2/3?
Rosi7
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Mai 02, 2015 18:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Limites com polinomio

Mensagempor ViniciusAlmeida » Seg Mai 04, 2015 09:41

Olá, Rosi.
Você não pode elevar os "t" a 6, pois dessa forma irá resultar em \sqrt[3]{t^6} = t^2 e na sua função original o valor é \sqrt[3]{t}. Uma forma de resolução é:

\lim_{x\rightarrow 1} (\frac{\sqrt[3]{t} - 1}{\sqrt{t} - 1}) = \lim_{x\rightarrow 1} (\frac{\sqrt[3]{t} - 1}{\sqrt{t} - 1})*(\frac{\sqrt{t} + 1}{\sqrt{t} + 1}) = \frac{(\sqrt[3]{t} - 1)*(\sqrt{t} + 1)}{t - 1}

Repare que escrever t-1 é a mesma coisa que escrever \sqrt[3]{t^3} - 1^3, o que é uma diferença de cubos e pode ser fatorada (veja uma explicação melhor sobre essa fatoração aqui: http://www.brasilescola.com/matematica/ ... erenca.htm)

\lim_{x\rightarrow 1}  \frac{(\sqrt[3]{t} - 1)*(\sqrt{t} + 1)}{\sqrt[3]{t^3} - 1^3} = \frac{(\sqrt[3]{t} - 1)*(\sqrt{t} + 1)}{(\sqrt[3]{t} - 1)((\sqrt[3]{t})^2 + \sqrt[3]{t} + 1)} = \frac{(\sqrt{t} + 1)}{((\sqrt[3]{t})^2 + \sqrt[3]{t} + 1)}

A partir dai é só você substituir 1, pois não há mais indeterminação, e encontrará 2/3
PS: Essa fatoração de cubos é muito útil nos limites, recomendo que dê uma olhada mesmo no link que deixei
ViniciusAlmeida
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Seg Fev 09, 2015 12:13
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Limites com polinomio

Mensagempor Rosi7 » Dom Mai 10, 2015 20:43

Muito obrigada Vinicius! Bom domingo!
Rosi7
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Mai 02, 2015 18:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59