• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Regra da Cadeia - Parte Grifada

Regra da Cadeia - Parte Grifada

Mensagempor Cleyson007 » Ter Nov 04, 2014 16:47

Se z = f(x,y), onde x = r² + s² e y = 2rs, encontre \frac{\partial^2 z}{\partial r\partial s}.

Alguém me esclarece da passagem grifada em vermelho?

Imagem
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Regra da Cadeia - Parte Grifada

Mensagempor Russman » Ter Nov 04, 2014 22:54

Primeiramente, a resolução separa as derivadas de modo que

\frac{\partial^2 z }{\partial r \partial s}= \frac{\partial }{\partial r}\left ( \frac{\partial z}{\partial s} \right ).

Mas, como
\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s}+\frac{\partial z}{\partial y}\frac{\partial y}{\partial s},

então

\frac{\partial }{\partial r}\left ( \frac{\partial z}{\partial s} \right ) = \frac{\partial }{\partial r}  \left (\frac{\partial z}{\partial x}\frac{\partial x}{\partial s}+\frac{\partial z}{\partial y}\frac{\partial y}{\partial s}   \right )

que, pela regra da soma e do produto, fica

\frac{\partial^2 z }{\partial r \partial s} = \left (\frac{\partial x }{\partial s}  \right )\left [ \frac{\partial }{\partial r} \left ( \frac{\partial z }{\partial x} \right )\right ] +\left (\frac{\partial z }{\partial x}  \right )\left (   \frac{\partial^2 x }{\partial  s \partial r} \rig\right ) +\left (\frac{\partial y }{\partial s}  \right )\left [ \frac{\partial }{\partial r} \left ( \frac{\partial z }{\partial y} \right )\right ] +\left (\frac{\partial z }{\partial y}  \right )\left ( \frac{\partial^2 y }{\partial  s \partial r}\right )

Agora, como

\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial r}+\frac{\partial z}{\partial y}\frac{\partial y}{\partial r}

então

\frac{\partial }{\partial r} \left ( \frac{\partial z }{\partial x} \right ) = \frac{\partial^2 z }{\partial x^2}\frac{\partial x }{\partial r}+\frac{\partial^2 z}{\partial x \partial y }\frac{\partial y}{\partial r}

e

\frac{\partial }{\partial r} \left ( \frac{\partial z }{\partial y} \right ) = \frac{\partial^2 z }{\partial y^2}\frac{\partial y }{\partial r}+\frac{\partial^2 z}{\partial x \partial y }\frac{\partial x}{\partial r}.

Portanto,

\frac{\partial^2 z }{\partial r \partial s} = \left (\frac{\partial x }{\partial s}  \right )\left [ \frac{\partial^2 z }{\partial x^2}\frac{\partial x }{\partial r}+\frac{\partial^2 z}{\partial x \partial y }\frac{\partial y}{\partial r} \right ] +\left (\frac{\partial z }{\partial x}  \right )\left (   \frac{\partial^2 x }{\partial  s \partial r} \rig\right ) +\left (\frac{\partial y }{\partial s}  \right )\left [ \frac{\partial^2 z }{\partial y^2}\frac{\partial y }{\partial r}+\frac{\partial^2 z}{\partial x \partial y }\frac{\partial x}{\partial r}\right ] +\left (\frac{\partial z }{\partial y}  \right )\left ( \frac{\partial^2 y }{\partial  s \partial r}\right )

e, enfim,

\frac{\partial^2 z }{\partial r \partial s} = \frac{\partial^2 z }{\partial x^2} \left (\frac{\partial x }{\partial s} \frac{\partial x }{\partial r} \right ) +\frac{\partial z }{\partial x}  \left (   \frac{\partial^2 x }{\partial  s \partial r} \rig\right ) + \left \frac{\partial^2 z}{\partial x \partial y } \left ( \frac{\partial x}{\partial s}\frac{\partial y}{\partial r}+\frac{\partial y}{\partial s}\frac{\partial x}{\partial r} \right )  +\frac{\partial z }{\partial y}  \left ( \frac{\partial^2 y }{\partial  s \partial r}\right ) + \frac{\partial^2 z }{\partial y^2} \left (\frac{\partial y }{\partial s} \frac{\partial y }{\partial r} \right )

Os termos entre parenteses são calculáveis pois é dada a forma explícita das funções.
Editado pela última vez por Russman em Qua Nov 05, 2014 01:08, em um total de 1 vez.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Regra da Cadeia - Parte Grifada

Mensagempor Cleyson007 » Ter Nov 04, 2014 23:30

Pode me esclarecer essa parte por favor Russman?

Russman escreveu:
que, pela regra da soma e do produto, fica

\frac{\partial^2 z }{\partial r \partial s} = \left (\frac{\partial x }{\partial s}  \right )\left [ \frac{\partial }{\partial r} \left ( \frac{\partial z }{\partial x} \right )\right ] +\left (\frac{\partial z }{\partial x}  \right )\left (   \frac{\partial^2 x }{\partial  s \partial r} \rig\right ) +\left (\frac{\partial y }{\partial s}  \right )\left [ \frac{\partial }{\partial r} \left ( \frac{\partial z }{\partial y} \right )\right ] +\left (\frac{\partial z }{\partial y}  \right )\left ( \frac{\partial^2 y }{\partial  s \partial r}\right )

A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Regra da Cadeia - Parte Grifada

Mensagempor Russman » Qua Nov 05, 2014 01:23

Primeiro, pela regra da soma

\frac{\partial }{\partial r}  \left (\frac{\partial z}{\partial x}\frac{\partial x}{\partial s}+\frac{\partial z}{\partial y}\frac{\partial y}{\partial s}   \right ) = \frac{\partial }{\partial r}  \left (\frac{\partial z}{\partial x}\frac{\partial x}{\partial s}\right)+\frac{\partial }{\partial r} \left(\frac{\partial z}{\partial y}\frac{\partial y}{\partial s}   \right )

e, depois, pela regra do produto em casa parcela:

\frac{\partial }{\partial r}  \left (\frac{\partial z}{\partial x}\frac{\partial x}{\partial s}\right)  = \left (\frac{\partial x}{\partial s}  \right )\left [ \frac{\partial }{\partial r}\left (\frac{\partial z}{\partial x}  \right ) \right ]  + \left (\frac{\partial z}{\partial x}  \right ) \left (\frac{\partial^2 x}{\partial r \partial s}
  \right )

\frac{\partial }{\partial r}  \left (\frac{\partial z}{\partial y}\frac{\partial y}{\partial s}\right)  = \left (\frac{\partial y}{\partial s}  \right ) \left[ \frac{\partial }{\partial r}\left (\frac{\partial z}{\partial y}  \right )  \right] + \left (\frac{\partial z}{\partial y}  \right ) \left (\frac{\partial^2 y}{\partial r \partial s}
  \right )

Agora basta somar. Mais claro?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Regra da Cadeia - Parte Grifada

Mensagempor Cleyson007 » Qua Nov 05, 2014 12:39

Obrigado Russman!

Agora ficou mais claro :)
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: