• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada

Derivada

Mensagempor Odle89 » Dom Dez 20, 2009 06:45

Bom dia pessoal!
Estou precisando de uma ajudinha pois tenho prova esta segunda e estou fazendo os exercícios de algumas provas antigas do professor porém não tenho as respostas das questões e, como ainda não estou dominando a matéria, gostaria que vocês confirmassem a resolução minha ou a corrigissem se for o caso.

tenho a função f(x) = \:f(x)=ln \left(\frac{1}{x} + \frac{1}{x^2}\right)

eu sei que a derivada deve ser do tipo f'(x) = u' / u

Daí fiz a função se tornar = ln\left(\frac{x+1}{x^2} \right)

Segui então a substituição e aplicação da derivada da seguinte forma:
f'(x)= \frac{\left(\frac{x+1}{2} \right)} {\left(\frac{x+1}{2} \right)} (derivada da fração superior sobre a fração inferior) e cheguei no seguinte resultado:
\frac{1}{x+1}

Está correta?
Qualquer dúvida no procedimento realizado por mim é só postar!
Abraços e desde já muito obrigado pela prontidão e parabéns ao fórum....
Odle89
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Dez 17, 2009 03:53
Formação Escolar: GRADUAÇÃO
Área/Curso: graduação eng. Civil (UFOP)
Andamento: cursando

Re: Derivada

Mensagempor Molina » Dom Dez 20, 2009 11:29

Bom dia, amigo.

Já tentou resolver através da derivada composta?

Chame u=\frac{x+1}{x^2}

Então o que precisamos derivar é y=ln(u)

Dessa forma, para calcular \frac{dy}{dx} fica:

\frac{dy}{dx}=\frac{dy}{du}*\frac{du}{dx}

Conseguiu entender?

Estou um pouco atarefado, mas caso você não consiga eu tento resolver para você.

Abraços! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Derivada

Mensagempor Odle89 » Dom Dez 20, 2009 17:32

molina escreveu:Bom dia, amigo.

Já tentou resolver através da derivada composta?

Chame u=\frac{x+1}{x^2}

Então o que precisamos derivar é y=ln(u)

Dessa forma, para calcular \frac{dy}{dx} fica:

\frac{dy}{dx}=\frac{dy}{du}*\frac{du}{dx}

Conseguiu entender?

Estou um pouco atarefado, mas caso você não consiga eu tento resolver para você.


:y:


Boa tarde molina!
primeiramente obrigado pela atenção.

Pois foi dessa forma que eu resolvi e, pela tabela das derivadas diretas sei que a derivada de ln u = u'/u ...
O que eu tenho dúvida é se o resultado é esse pois fiz de uma outra maneira tb que acho que não é correta e obtive um resultado semelhante...
Queria saber o resultado pra poder saber a forma correta!

Obrigado novamente.

Abraços!
Odle89
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Dez 17, 2009 03:53
Formação Escolar: GRADUAÇÃO
Área/Curso: graduação eng. Civil (UFOP)
Andamento: cursando

Re: Derivada

Mensagempor Elcioschin » Seg Dez 21, 2009 18:37

Odle89

Tanto do seu jeito como do jeito do Molina dá certo.

Só que você cometeu um erro ao derivar:

f(x) = ln[(x + 1)/x²]

A derivada de f(x) = g(x)/h(x) é f '(x) = [h(x)*g'(x) - g(x)*h(x)]/[h(x)]² [e não f '(x) = g'(x)/h'(x)]

f '(u) = [(x²)*(x + 1)' - (x+ 1)(x²)']/(x²)² ----> f '(u) = [x²*1 - (x + 1)*(2x)]/(x²)² ----> f '(u) = (- x² - 2x)/(x²)² ----> f '(u) = - (x + 2)/x³

Agora continue:

f '(x) = u'/u -----> f '(x) = [-(x + 2)/x³]/[(x + 1)/x² ----> f '(x) = - (x + 2)/x*(x + 1)
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Derivada

Mensagempor Molina » Seg Dez 21, 2009 23:07

Como eu disse, estou meio sem tempo nesse final do ano.

Então fica difícil resolver as questões, mas sempre tento ajudar da melhor forma.

Eu havia visto que a derivada estava errada, pois a integral do seu resultado nao retorna no f(x) inicial.

O Elcio já cantou a letra...

Abraços! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Derivada

Mensagempor Cleide » Ter Dez 22, 2009 20:12

Olá pessoal! Eu gostaria de saber como demonstrar que se f é uma função par, então f'(x)= -f'(-x) e também que se f é uma função ímpar, então f'(x)=f'(-x). É URGENTE!!! Obrigada...
Cleide
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Dez 22, 2009 20:01
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 15 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D