por Victor Mello » Seg Nov 11, 2013 23:13
Galera, eu estava tentando integrar
![\int\frac{dx}{\sqrt[]{4x^2-49}} \int\frac{dx}{\sqrt[]{4x^2-49}}](/latexrender/pictures/1f9875a9e61005037a2fe8488411f41c.png)
e tudo estava dando certo. Usei

e

(para servir de referência para o final da resolução). Derivei o

e substitui o dx. Aí ficou assim:
![\int\frac{7sec\theta tg\theta d\theta}{\sqrt[]{196sec^2\theta-49}} \int\frac{7sec\theta tg\theta d\theta}{\sqrt[]{196sec^2\theta-49}}](/latexrender/pictures/4f47eb7517597fb8197fb55b235ba4e7.png)
![\int\frac{7sec\theta tg\theta d\theta}{\sqrt[]{49(4sec^2\theta-1)}} \int\frac{7sec\theta tg\theta d\theta}{\sqrt[]{49(4sec^2\theta-1)}}](/latexrender/pictures/e11a29cae8993074cfbd2c09a5c0da1e.png)
![\int\frac{7sec\theta tg\theta d\theta}{\sqrt[]{49}*\sqrt[]{4sec^2\theta-1}} \int\frac{7sec\theta tg\theta d\theta}{\sqrt[]{49}*\sqrt[]{4sec^2\theta-1}}](/latexrender/pictures/0f0f810ba683aaf5a2369f88ba63f5c0.png)
![\int\frac{sec\theta tg\theta d\theta}{\sqrt[]{4sec^2\theta-1}} \int\frac{sec\theta tg\theta d\theta}{\sqrt[]{4sec^2\theta-1}}](/latexrender/pictures/24da9fbfa98825d2370b131d634fca1a.png)
= OBS: eu tinha cancelado o 7 como termo unitário por causa da raíz quadrada de 49
A partir daqui virou outro problema: eu preciso agora de uma outra substituição e chamei o

e derivei ela para subistituir o

e assim ficou:
![\int\frac{du}{\sqrt[]{4u^2-1}} \int\frac{du}{\sqrt[]{4u^2-1}}](/latexrender/pictures/21215219f3fede5e9e21942fa558da2d.png)
e fatorei o

![\int\frac{du}{\sqrt[]{(2u-1)(2u+1)}} \int\frac{du}{\sqrt[]{(2u-1)(2u+1)}}](/latexrender/pictures/defaf216981e526e421322de3576177e.png)
=
![\int\frac{du}{\sqrt[]{2u-1}\sqrt[]{2u+1}} \int\frac{du}{\sqrt[]{2u-1}\sqrt[]{2u+1}}](/latexrender/pictures/94dca3edf4618ea3a9b9d38a105cef4e.png)
=
![\int\frac{du}{\sqrt[]{2u-1}} *\frac{1}{\sqrt[]{2u+1}} \int\frac{du}{\sqrt[]{2u-1}} *\frac{1}{\sqrt[]{2u+1}}](/latexrender/pictures/897aac462c950b050329dd31221653ea.png)
=
E parei aqui. Não tem como mais integrar pela substituição simples e muito menos por partes por causa da raíz do denominador na integral antes de eu fazer por substituição simples. Alguém poderia sugerir qual a substituição mais adequada depois da trigonométrica? Por muito pouco eu não consegui integrar
Bom, espero que vocês tenham compreendido o meu raciocínio e se puderem me ajudar, eu agradeço
Obrigado.
-
Victor Mello
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Nov 03, 2013 17:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da computação.
- Andamento: cursando
por e8group » Ter Nov 12, 2013 20:55
Atenção com a identidade

o que implica

. Agora note

. Faça uma comparação deste resultado com a outra relação .Qual substituição deve tomar de modo escrever

como

?
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Victor Mello » Ter Nov 12, 2013 22:43
Já tinha percebido isso antes de você comentar rsrsrsrsrs, sempre esqueço de um detalhe que faz toda a diferença, não sei como. Agora não posso mais esquecer.

-
Victor Mello
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Nov 03, 2013 17:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da computação.
- Andamento: cursando
por Victor Mello » Ter Nov 12, 2013 23:32
Já consegui aqui agora. Obrigado pelo detalhe.

-
Victor Mello
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Nov 03, 2013 17:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da computação.
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral por substituição trigonométrica.
por ClaudioSP » Qui Out 08, 2009 12:25
- 1 Respostas
- 3653 Exibições
- Última mensagem por ClaudioSP

Qui Out 08, 2009 14:25
Cálculo: Limites, Derivadas e Integrais
-
- integral por substituiçao trigonometrica 3
por beel » Dom Nov 27, 2011 18:24
- 3 Respostas
- 2741 Exibições
- Última mensagem por LuizAquino

Seg Nov 28, 2011 16:44
Cálculo: Limites, Derivadas e Integrais
-
- integral- substituiçao trigonometrica 4
por beel » Dom Nov 27, 2011 18:29
- 1 Respostas
- 1965 Exibições
- Última mensagem por LuizAquino

Seg Nov 28, 2011 16:26
Cálculo: Limites, Derivadas e Integrais
-
- Integral por substituição trigonométrica
por Crist » Seg Nov 12, 2012 20:46
- 1 Respostas
- 1400 Exibições
- Última mensagem por e8group

Qui Nov 15, 2012 15:38
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Substituição Trigonométrica
por klueger » Qua Mar 06, 2013 23:03
- 4 Respostas
- 3481 Exibições
- Última mensagem por Russman

Qui Mar 07, 2013 01:45
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.