• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida 1 / X SQRT (X^2 +1)

Dúvida 1 / X SQRT (X^2 +1)

Mensagempor Knoner » Qui Set 26, 2013 20:15

Olá, estou em dúvida na resolução da seguinte integral: 1 / X SQRT (X^2 +1)

Obrigado !
Knoner
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Set 26, 2013 20:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Fisica
Andamento: cursando

Re: Dúvida 1 / X SQRT (X^2 +1)

Mensagempor Man Utd » Qui Set 26, 2013 23:02

olá :)


\\\\\\ \int \frac {1}{x*\sqrt{x^{2}+1}}dx \\\\ x=tg\beta \Leftrightarrow dx=sec^{2}\beta d\beta \\\\\\ \int \frac {sec^{2}\beta }{tg\beta*\sqrt{(tg\beta)^{2}+1}}d\beta \\\\\\ \int \frac {sec^{2}\beta }{tg\beta*sec\beta}d\beta  \\\\\\ \int \frac {sec\beta }{tg\beta}d\beta \\\\\\  \int \frac{\frac{1}{cos\beta}}{\frac{sen\beta}{cos\beta}}d\beta \\\\\\ \int cossec \beta d\beta

vamos aplicar uma técnica para integrar \int cossec \beta d\beta :

\\\\\\ \int \frac{(cossec \beta)*(cotg\beta+cossec\beta)}{(cotg\beta+cossec\beta)} d\beta \\\\\\ -\int \frac{-cotg\beta*cossec\beta-cossec^{2}\beta}{(cotg\beta+cossec\beta)} \\\\\\ s=cotg\beta+cossec\beta \Leftrightarrow ds= -cotg\beta*cossec\beta-cossec^{2}\beta d\beta \\\\\\ - \int \frac{1}{s}ds \\\\ -ln|s|+C \\\\ -ln|cotg\beta+cossec\beta |+C \\\\ -ln|\frac{1}{x}+\frac{\sqrt{x^{2}+1}}{x}|+C \\\\ -ln|\frac{\sqrt{x^{2}+1}+1}{x}|+C \\\\ -(ln|\sqrt{x^{2}+1}+1|-ln|x|)+C \\\\ -ln|\sqrt{x^{2}+1}+1|+ln|x|+C \\\\ ln|\frac{x}{\sqrt{x^{2}+1}+1}|+C

edit:resposta editada
Editado pela última vez por Man Utd em Sex Set 27, 2013 01:21, em um total de 2 vezes.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Dúvida 1 / X SQRT (X^2 +1)

Mensagempor Knoner » Qui Set 26, 2013 23:34

Disso eu cheguei em integral de -du/w² = 1/w porém substitui e não bateu com a resposta que é ln |x/1+sqrt(1+x²) + c
:/
Knoner
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Set 26, 2013 20:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Fisica
Andamento: cursando

Re: Dúvida 1 / X SQRT (X^2 +1)

Mensagempor Man Utd » Sex Set 27, 2013 01:23

olá por favor reveja a mensagem,eu tinha errado (foi mal) e editei . :)
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Dúvida 1 / X SQRT (X^2 +1)

Mensagempor Knoner » Sex Set 27, 2013 01:30

Obrigado pela ajuda ! :D
Knoner
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Set 26, 2013 20:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Fisica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?