por crsjcarlos » Qua Mai 01, 2013 12:09
Use o Teorema do valor médio para provar a seguinte desigualdade:
|sen(a) - sen(b)|

|a - b|, para todo a e b
-
crsjcarlos
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Dez 05, 2012 17:32
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por e8group » Qua Mai 01, 2013 14:07
Definimos
![g(x) = sin(x) , I = [a_1,a_2] g(x) = sin(x) , I = [a_1,a_2]](/latexrender/pictures/f7c6698ca7b377d4a802efe5bced2f63.png)
. Como

é diferenciável em

(note que este caso é particular , poderíamos ter apenas

contínua em
![[a_1,a_2] [a_1,a_2]](/latexrender/pictures/b56728a47f0beb91f617dbea1a6012c9.png)
e diferenciável em

para aplicar o Teorema do valor médio [TVM] ) , pelo
TVM , existe um ponto

em

tal que

.
Para concluir ,tome

ou

e observe que

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- teorema do valor medio
por matmatco » Seg Nov 14, 2011 10:18
- 3 Respostas
- 2548 Exibições
- Última mensagem por LuizAquino

Seg Nov 14, 2011 20:46
Cálculo: Limites, Derivadas e Integrais
-
- [teorema do valor médio]
por Ge_dutra » Seg Jun 17, 2013 00:12
- 0 Respostas
- 1150 Exibições
- Última mensagem por Ge_dutra

Seg Jun 17, 2013 00:12
Cálculo: Limites, Derivadas e Integrais
-
- Duvida teorema do valor médio
por markitodq » Dom Abr 21, 2013 09:47
- 0 Respostas
- 1131 Exibições
- Última mensagem por markitodq

Dom Abr 21, 2013 09:47
Cálculo: Limites, Derivadas e Integrais
-
- Aplicações de Derivada [Teorema do valor médio]
por xanda2012 » Sáb Jun 16, 2012 16:22
- 2 Respostas
- 2133 Exibições
- Última mensagem por xanda2012

Sáb Jun 16, 2012 17:43
Cálculo: Limites, Derivadas e Integrais
-
- [Teorema do Valor Médio] Demonstrar desigualdade
por Brunorp » Qua Abr 06, 2016 23:07
- 1 Respostas
- 1283 Exibições
- Última mensagem por adauto martins

Sex Abr 08, 2016 11:16
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.