• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[DERIVADA] FORMA PARAMÉTRICA

[DERIVADA] FORMA PARAMÉTRICA

Mensagempor fabriel » Qui Abr 25, 2013 17:43

E ai Pessoal blz?
Então estou em duvida nesse exercicio.
-- Calcular a derivada y'=\frac{dy}{dx} da seguinte função definida na forma paramétrica. Para quais valores de t, y' está definida?
Essa é a função dada na forma paramétrica:
x=cos (2t)
y=sen(2t)
e isso para t\in\left[0,\frac{\pi}{2} \right]

Calculei a derivada e deu:
\frac{dy}{dx}=\frac{\frac{d(sen(2t))}{dt}}{\frac{d(cos(2t))}{dt}}=\frac{2cos2t}{-2sen2t}=-\frac{cos2t}{sen2t}=-cotg 2t

A minha duvida é nessa questão, como é que vou colocar \frac{dy}{dx} em função de x?

e mesmo se eu conseguir colocar, para quais valores de t, y' está definida, sendo que coloquei \frac{dy}{dx} em função de x?
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [DERIVADA] FORMA PARAMÉTRICA

Mensagempor e8group » Qui Abr 25, 2013 21:24

Pensei de outra forma :

Pela regra da cadeia ,temos :

\frac{dy}{dx} = \frac{dsin(2t)}{dx} = \frac{dsin(2t)}{d(2t)} \cdot \frac{d(2t)}{dx} = 2 cos(2t) \cdot \frac{dt}{dx} = 2x \cdot \frac{dt}{dx} .

Mas , \frac{d cos(2t)}{dx} = \frac{d(cos(2t)}{d(2t)}\cdot \frac{d(2t)}{dx} = -2sin(2t) \cdot \frac{dt}{dx}=  -2y \cdot \frac{dt}{dx} =   \frac{dx}{dx} = 1 .

Para y\neq 0 podemos isolar D_x t ,

\frac{dt}{dx} = \frac{-1}{2y} .

Daí ,


\frac{dy}{dx}  =  -\frac{x}{y} (Que é o que vc achou).

Mas pela identidade trigonométrica ,temos sin^2(2t) = 1 -cos^2(2t) = 1 -x^2 .E como ,

y = sin(2t) > 0  \forall t \in (0,\pi/2) ,

resulta

y = sin(2t) = \sqrt{1-x^2} .


Assim ,

\frac{dy}{dx}  =  -\frac{x}{\sqrt{1-x^2}} , x\in (0,1) .

Se não errei algum cálculo acredito que seja isto .

Obs.: Da forma que vc fez está certo também ,só há um problema no intervalo [0,\pi/2] há dois valores que cot(2t) não está definido .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [DERIVADA] FORMA PARAMÉTRICA

Mensagempor fabriel » Sex Abr 26, 2013 02:36

Entendo, obrigado!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.