• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Campo conservativo

Campo conservativo

Mensagempor barbara-rabello » Sáb Abr 20, 2013 17:38

Alguém pode me ajudar ? Sei que posso resolver por campo conservativo, mas não consegui desenvolver!
Seja F (x,y,z)= (xyf(x^{2}+y^{2}+z^{2}))i + (y^{2}f(x^{2}+y^{2}+z^{2}))j + (zf(x^{2}+y^{2}+z^{2}))k,
onde f: \Re\rightarrow\Re é uma função diferenciável. Seja g: \Re\rightarrow\Re uma
antiderivada de f, tal que g(8) = 10 e g(4) = 2. Calcule \int_{C} F.dr, onde C é a parte da interseção da superfície cilíndrica x² + y² = 4 com o plano z = y, contida no primeiro octante, orientada no sentido antihorário quando vista de cima.

Obs.: é uma função vetorial.
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Campo conservativo

Mensagempor young_jedi » Dom Abr 21, 2013 15:10

por campo conservativo eu não consegui visualizar a solução
mais uma possivel solução seria parametrizar o caminho da integral, definido pela intersecção do cilindro e do plano
teriamos que

x=2cos(t)

y=z=2sen(t)

com 0\leq t\leq\frac{\pi}{2}

então
r=(2cos(t),2sen(t),2sen(t))

dr=(-2sen(t),2cos(t),2cos(t))dt

subsitiuindo na integral da pra calcular,se tiver duvidas comente
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Campo conservativo

Mensagempor marinalcd » Dom Abr 21, 2013 18:38

também não consegui fazer por campo conservativo.
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Campo conservativo

Mensagempor barbara-rabello » Dom Abr 21, 2013 19:36

Quando tentei desse jeito não consegui terminar, pois não consegui montar a integral,
pois vai aparecer a função f. Como resolver a integral assim?
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Campo conservativo

Mensagempor young_jedi » Dom Abr 21, 2013 22:24

então, substituindo na integral temos

\int_{0}^{\frac{\pi}{2}}\Big(2cos(t).2sen(t).f(4cos^2(t)+4sen^2(t)+4sen^2(t)),
4sen^2(t).f(4cos^2(t)+4sen^2(t)+4sen^2(t)),2sen(t).f(4cos^2(t)+4sen^2(t)+4sen^2(t))\Big)\Big(-2sen(t),2cos(t),2cos(t)\Big)dt

\int_{0}^{\frac{\pi}{2}}-8cos(t).sen^2(t).f(4+4sen^2(t))+
8cos(t)sen^2(t).f(4+4sen^2(t))+4sen(t)cos(t).f(4+4sen^2(t))dt

\int_{0}^{\frac{\pi}{2}}4sen(t)cos(t).f(4+4sen^2(t))dt


fazendo

u=4+4sen^2(t)

du=8sen(t)cos(t)dt

então a integral fica

\int_{0}^{\frac{\pi}{2}}\frac{f(u)}{2}du

mais como g é a antiderivada de f então

=\frac{g(u)}{2}\Big|_{0}^{\pi/2}

=\frac{g(4+4sen^2(t))}{2}\Big|_{0}^{\pi/2}

\frac{g(4+4)-g(4)}{2}=\frac{8-2}{2}=3
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Campo conservativo

Mensagempor barbara-rabello » Seg Abr 22, 2013 14:24

Muito obrigada pela ajuda! Realmente não sabia como fazer com a função.

Só mais uma pergunta, na hora de parametrizar, não tem problema fazer y=z= 2sen(t)? E porque você não calculou com o intervalo de 0 à \frac{\Pi}{2}? Não entendi essa passagem.
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Campo conservativo

Mensagempor young_jedi » Seg Abr 22, 2013 14:32

não tem problema substitui z=y=2sen(t)

e eu calculei sim para o intervalo de \frac{\pi}{2}

veja que

g\left(4+4sen^2\left(\frac{\pi}{2}\right)\right)

=g(4+4)=g(8)

e

g\left(4+4sen^2(0)\right)

=g(4+0)=g(4)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Campo conservativo

Mensagempor barbara-rabello » Seg Abr 22, 2013 14:50

Muiuto obrigada pela ajuda e pela paciência!!! rsrs
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}